PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dried activated sludge biomass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption of Cu(II) and Ni(II) ions onto the waste powdered activated sludge biomass (PWB), which was obtained from the biological wastewater treatment plant, was investigated in this experimental study. The effects of contact time, pH, temperature, initial sorbate and sorbent concentrations on the adsorption were determined. The BET surface area, pore volume, and pore diameter of PWB were found to be about 0.51 m2/g, 0.0053 cm3/g, and 41.4 nm, respectively. Considering the R2  value, qexp  and qcal , the Langmuir and Freundlich models were well described for Cu(II) and Ni(II) adsorption, respectively. The adsorption mechanism of Cu(II) and Ni(II) onto the PWB could be better simulated by the pseudo-second-order kinetic mechanism than the pseudo-first-order, intra particle diffusion and Elovich models. Thermodynamic aspects of the adsorption of heavy metals were also investigated. Considering the applied desorbing agents for reuse of PWB for Ni(II) recovery, desorption cycle is not feasible due to the deterioration of the PWB structure.
Słowa kluczowe
Rocznik
Strony
20--28
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Engineering, Sivas Cumhuriyet University, 58140, Sivas, Turkey
autor
  • Department of Environmental Engineering, Sivas Cumhuriyet University, 58140, Sivas, Turkey
autor
  • Department of Organic Agriculture, Sivas Vocational School of Higher Education, Sivas Cumhuriyet University, 58140, Sivas, Turkey
Bibliografia
  • 1. Pagnanelli, F., Mainelli, S., Bornoroni, L., Dionisi, D. & Toro, L. (2009). Mechanisms of heavy-metal removal by activated sludge. Chemosphere. 75, 1028–1034. DOI: 10.1016/j.chemosphere.2009.01.043
  • 2. Markou, G., Mitrogiannis, D., Çelekli, A., Bozkurt, H., Georgakakis, D. & Chrysikopoulos, C.V. (2015). Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem. Eng. J. 259, 806–813. https://DOI.org/10.1016/j.cej.2014.08.037
  • 3. Azouaou, N., Sadaoui, Z., Djaafri, A. & Mokaddem, H. (2010). Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 184(1), 126–134. https://DOI.org/10.1016/j.jhazmat.2010.08.014
  • 4. Jai, P.H., Wook, J.S., Kyu, Y.J., Gil, K.B. & Mok, L.S. (2007). Removal of heavy metals using waste eggshell. J. Environ. Sci. 19(12), 1436–1441. http://dx.DOI.org/10.1016/S1001-0742(07)60234-4
  • 5. Aslan, S., Ozturk, M. & Yildiz, S. (2016). Sorption of heavy metals on biosludge. Eur. Sci. J. ESJ, 12(10), ISSN: 1857–7881 (Print), ISSN: 1857–7431 (Online).
  • 6. Jianlong, W., Yi, Q., Horan, N. & Stentiford, E. (2000). Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresour. Technol. 75(2), 157–161. https://DOI.org/10.1016/S0960-8524(00)00041-9
  • 7. Liu, D., Tao, Y., Li, K. & Yu, J. (2012). Influence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge. Bioresour. Technol. 126, 56–63.http://dx.DOI.org/10.1016/j.biortech.2012.09.025
  • 8. Pamukoglu, M.Y. & Kargi, F. (2006). Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochem. 41(5), 1047–1054. https://DOI.org/10.1016/j.procbio.2005.11.010
  • 9. Wei, D., Zhang, K., Wang, S., Sun, B., Wu, N., Xu, W., Du, B. & Wei, Q. (2017). Characterization of dissolved organic matter released from activated sludge and aerobic granular sludge biosorption processes for heavy metal treatment via a fluorescence approach. Int. Biodeterior. Biodegrad. 124, 2017. 326–333. https://DOI.org/10.1016/j.ibiod.2017.03.018
  • 10. Yuncu, B., Sanin, F.D. &Yetis, U. (2006). An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J. Hazard. Mater. 137(2), 990–997. https://DOI.org/10.1016/j.jhazmat.2006.03.020
  • 11. Zhou, Y., Zhang, Z., Zhang, J. & Xia, S. (2016). New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. J. Environ. Sci., 45, 248–256. https://DOI.org/10.1016/j.jes.2016.03.007
  • 12. Filipkowska, U. & Kuczajowska-Zadrożna, M. (2016). Investigation of the adsorption/desorption equilibria of Cd (II), Zn (II) and Cu (II) ions on/from immobilized digested sludge using biosurfactants. Environ. Earth Sci. 75(9), 814. DOI: 10.1007/s12665-016-5674-6.
  • 13. Weng, C.H., Chang, E.E. & Chiang, P.C. (2001). Characteristics of new coccine dye adsorption onto digested sludge particulates. Water Sci. Technol. 44(10), 279–284.
  • 14. Cojocaru, C., Diaconu, M., Cretescu, I., Savić, J. & Vasić, V. (2009). Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloids Surf. A: Physicochemical and Engineering Aspects, 335(1), 181–188. https://DOI.org/10.1016/j.colsurfa.2008.11.003
  • 15. Kumar, R. Bishnoi, N.R. & Bishnoi, K. (2008). Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135(3), 202–208. https://DOI.org/10.1016/j.cej.2007.03.004
  • 16. Tunali, Y., Karaca, H., Tay, T., Kivanç, M. & Bayramoglu, G. (2009). Biosorption of Pb (II) from aqueous solutions by a fungal biomass in a batch system: Equilibrium and kinetic studies, Asian J. Chem. 21(8), 6015.
  • 17. Zhang, Q., Hu, J., Lee, D.J., Chang, Y. & Lee, Y.J. (2017). Sludge treatment: Current research trends, Bioresour. Technol. 243, 1159–1172, http://dx.DOI.org/10.1016/j.biortech.2017.07.070
  • 18. Alexandre, V.M.F., Castro, T.M.S., Araújo, L.V., Santiago, V.M.J., Freire, D.M.G. & Cammarota, M.C. (2015). Minimizing solid wastes in an activated sludge system treating oil refinery wastewater. Chem. Eng. Process. http://dx.DOI.org/10.1016/j.cep.2015.10.021.
  • 19. Li, C. & Ju, L.K. (2018). Enhancement of resource recovery and sludge digestion by cultivation of phagotrophic algae with alkali-pretreated waste activated sludge and waste ketchup. Process Saf. Environ. Prot.113 233–241. https://DOI. org/10.1016/j.psep.2017.10.004
  • 20. Abdelfattah, I., Ismail, A.A., Sayed. F.A., Almedolab. A. & Aboelghait, K.M. (2016). Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environ. Nanotechnol. Monit. Man. 6: 176–183. http://dx.DOI.org/10.1016/j.enmm.2016.10.007
  • 21. Nuhoglu, Y. & Oguz, E. (2003). Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Prosess Biochem. 38, 1627–1631. DOI: 10.1016/S0032-9592(03)00055-4.
  • 22. Hammaini, A., Gonzalez, F., Ballester, A., Blazquez, M.L. & Munoz, J.A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. J. Environ. Manage. 84, 419–426. DOI: 10.1016/j.jenvman.2006.06.015.
  • 23. Kargi, F. & Cikla, S. (2006). Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme Microb. Technol. 38, 705–710. DOI: 10.1016/j.enzmictec.2005.11.005
  • 24. Laurent, J., Casellas, M., Pons, M.N. & Dagot, C. (2010). Cadmium biosorption by ozonized activated sludge: The role of bacterial flocs surface properties and mixed liquor composition. J. Hazard. Mater. 183, 256–263. DOI: 10.1016/j.jhazmat.2010.07.019.
  • 25. Ong, S.A., Toorisaka, E., Hirata, M. & Hano, T. (2013). Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. App. Water Sci. 3, 321–325. DOI: 10.1007/s13201-013-0084-3.
  • 26. Rao, P.R. & Bhargavi, C. (2013). Studies on biosorption of heavy metals using pretreated biomass of fungal species. Int. J. Chem. Chem. Eng. 3(3), 171–180, ISSN 2248-9924.
  • 27. Yang, C., Wang, J., Lei, M., Xie, G., Zeng, G. & Luo, S. (2010). Biosorption of zinc (II) from aqueous solution by dried activated sludge. J. Environ. Sci. 22(5), 675–680. https://DOI.org/10.1016/S1001-0742(09)60162-5
  • 28. Goodwin, J.A.S. & Forster, C.F. (19859. A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics. Water Res. 19(4), 527–533. https://DOI.org/10.1016/0043-1354(85)90045-4
  • 29. Horan, N.J. & Eccles, C.R. (1986). Purification and characterization of extracellular polysaccharide from activated sludges. Water Res. 20(11), 1427–1432. https://DOI. org/10.1016/0043-1354(86)90142-9
  • 30. Chang, D., Fukushi, K. & Ghosh, S. (1995). Stimulation of activated sludge cultures for enhanced heavy metal removal. Water Environ. Res. 67(5), 822–827. https://DOI. org/10.2175/106143095X131745
  • 31. Durmaz, B. & Sanin, F.D. 2001. Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge. Water Sci. Technol. 44(10), 221–229.
  • 32. APHA, AWWA, WPCF (1995) Standard Methods for the Examination of water and wastewater, 19th ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • 33. Jamshidi, M., Jamshidi, A. & Mehrdadi, N. (2012). Application of sewage dry sludge in concrete mixtures. Asian J. Civil Eng (building and housing), 13(3), 365–375.
  • 34. Mojapelo, S.K. (2017). Characterisation of wastewater dry sludge for lightweight concrete application, Faculty of Engineering and The Built Environment, Tshwane University of Technology, Master Thesis, 107 p.
  • 35. Mun, K.J. (2007). Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construct. Built. Mater. 21(7), 1583–1588. https://DOI.org/10.1016/j.conbuildmat.2005.09.009
  • 36. Ata, A., Nalcaci, O.O. & Ovez, B. (2012). Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms. Algal Res. 1(2), 194–204. https://DOI.org/10.1016/j.algal.2012.07.001.
  • 37. Chen, H., Dou, J. & Xu, H. (2017). Removal of Cr (VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr (III) and biosorption. Appl. Surf. Sci. 425, 728–735. http://dx.DOI.org/10.1016/j.apsusc.2017.07.053
  • 38. Rocha, C.G., Zaia, D.A.M., da Silva Alfaya, R.V. & da Silva Alfaya, A.A. (2009). Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effl uents. J. Hazard. Mater. 166(1), 383–388. https://DOI.org/10.1016/j.jhazmat.2008.11.074
  • 39. Nouha, K., Hoang, N.V. & Tyagi, R.D. (2016). Fourier transform infrared spectroscopy and liquid chromatography–mass spectrometry study of extracellular polymer substances produced on secondary sludge fortifi ed with crude glycerol. J. Mater. Sci. Eng. 5:3. http://dx.DOI.org/10.4172/2169-0022.1000240
  • 40. Yahaya, Y.A., Don, M.M. & Bhatia, S. (2009). Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies. J. Hazard. Mater. 161(1), 189–195. https://DOI.org/10.1016/j.jhazmat.2008.03.104
  • 41. Badireddy, A.R., Chellam, S., Gassman, P.L., Engelhard, M.H., Lea, A.S. & Rosso, K.M. (2010). Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res. 44(15), 4505–4516. https://DOI.org/10.1016/j.watres.2010.06.024
  • 42. Yin, C., Meng, F. & Chen, G.H. (2015). Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria. Water Res. 68, 740–749. http://dx.DOI.org/10.1016/j.watres.2014.10.046
  • 43. Chassary, P., Vincent, T. & Guibal, E. (2004). Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React. Funct. Polym. 60, 137–149. https://DOI.org/10.1016/j.reactfunctpolym.2004.02.018
  • 44. Guzman, J., Saucedo, I., Revilla, J., Navarro, R. & Guibal, E. (2003). Copper sorption by chitosan in the presence of citrate ions: influence of metal speciation on sorption mechanism and uptake capacities. Int. J. Biol. Macromolecules. 33(1), 57–65. https://DOI.org/10.1016/S0141-8130(03)00067-9
  • 45. Bermúdez, Y.G., Rico, I.L.R., Bermúdez, O.G. & Guibal, E. (2011). Nickel biosorption using Gracilaria caudata and Sargassum muticum. Chem. Eng. J. 66, 122–131. http://dx.DOI.org/10.1016/j.cej.2010.10.038.
  • 46. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J. & Tchobanoglous, G. (2005). Water Treatment: Priciples and Design, 2nd Edition, John Wiley and Son, Inc. 1947p.
  • 47. Aslan, S. & Topcu, U.S. (2015). Adsorption of nickel and copper from water by waste nitrification organisms, ISITES2015--3rd International Symposium on Innovative Technologies in Engineering and Science, pp: 1955–1963, Valencia, Spain, 2015.
  • 48. Katal, R., Baei, M.S., Rahmati, H.T. & Esfendian, H. (2012). Kinetic, isotherm, and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk. J. Industrial Chem. 18, 295–302. http://dx.DOI.org/10.1016/j.jiec.2011.11.035
  • 49. Demirbas, E., Dizge, N., Sulak, M.T. & Kobya, M. (2009). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 148(2), 480–487. https://DOI.org/10.1016/j.cej.2008.09.027
  • 50. Aslan, S., Polat, A. & Topcu, U.S. (2015), Assessment of the adsorption kinetics, equilibrium and thermodynamics for the potential removal of Ni2+ from aqueous solution using waste eggshell. Journal of Environmental Engineering and Landscape Management, 23:3, 221–229, DOI: 10.3846/16486897.2015.1005015.
  • 51. Kilic, M., Varol, E.A. & Putun, A.E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 189, 397–403. http://dx.DOI. org/10.1016/j.jhazmat.2011.02.051
  • 52. Sljivic, M., Smiciklas, I., Plecas, I. & Mitric, M. (2009). The influence of equilibration conditions and hydroxyapatite physico-chemical properties onto retention of Cu2+ ion. Chem. Eng. J. 148, 80–88. http://dx.DOI.org/10.1016/j.cej.2008.08.003
  • 53. Ghasemi, Z., Seif, A., Ahmadi, T.S., Zargar, B., Rashidi, F. & Rouzbahani, G.M. (2012). Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution. Adv. Powder Technol. 23(2), 148–156. https://DOI.org/10.1016/j.apt.2011.01.004
  • 54. Rahchamani, J., Mousavi, H.Z. & Behzad, M. (2011). Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies. Desalination, 267(2), 256–260. https://DOI.org/10.1016/j.desal.2010.09.036
  • 55. Doğan, M., Ozdemir, Y. & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pig. 75(3), 701–713. https://DOI.org/10.1016/j.dyepig.2006.07.023
  • 56. Mezenner, N.Y. & Bensmaili, A. (2009). Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem. Eng. J. 147(2), 87–96. https://DOI. org/10.1016/j.cej.2008.06.024
  • 57. Ahmad, R., Kumar, R. & Haseeb, S. (2012). Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity. Arabian J. Chem. 5, 353–359. https:// DOI.org/10.1016/j.arabjc.2010.09.003
  • 58. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2005). An adsorption and kinetic study of lac dyeing on silk. Dyes Pig. 64, 231–241. http://dx.DOI.org/10.1016/j.dyepig.2004.06. 09.
  • 59. Ayoob, S., Gupta, A.K., Bhakat, P.B. & Bhat, V.T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chem. Eng. J. 140(1), 6–14. https://DOI.org/10.1016/j.cej.2007.08.029
  • 60. Coman, V., Robotin, B. & Ilea, P. (2013). Nickel recovery/removal from industrial wastes: A review. Resour. Conserve. Recycle. 73, 229–238. https://DOI.org/10.1016/j.resconrec.2013.01.019
  • 61. Wardani, A.K., Hakim, A.N., Khoiruddin, Destifen, W., Goenawan, A. & Wenten, I.G. (2017). Study on the influence of applied voltage and feed concentration on the performance of electrodeionization in nickel recovery from electroplating wastewater, Proceedings of the 1st International Process Metallurgy Conference (IPMC 2016) AIP Conf. Proc. 1805. DOI: 10.1063/1.4974415.
  • 62. Davidson, J. (2010). Removal of nickel (II) from aqueous solutions by polymer-enhanced ultrafiltration, A major qualifying project submitted to the faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Bachelor of Science Degree, Shanghai, China Project Center 73 p.
  • 63. Dhokpande, S. & Kaware, J. (2016). Regeneration and recovery of nickel-a review. Int. J. Sci. Eng. App. Sci. (IJSEAS) – 2, 7, ISSN: 2395-3470.
  • 64. Ramamurthi, V., Priya, P.G., Saranya, S. & Basha, C.A. (2009). Recovery of nickel (II) ions from electroplating rinse water using hectorite clay. Modern App. Sci. 3(9), 37. http:// dx.DOI.org/10.5539/mas.v3n9p37
  • 65. Deng, L., Su, Y., Su, H., Wang, X. & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J. Hazard. Mater. 143 2007. 220–225. https://DOI.org/10.1016/j.jhazmat.2006.09.009
  • 66. Gupta, V.K. & Rastogi, A. (2008). Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard. Mater. 154(1), 347–354. https://DOI.org/10.1016/j.jhazmat.2007.10.032
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
W bibliografii brak poz. 51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f713255-865b-4779-b25c-d05b94e601c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.