Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of an investigation of the thermal deformation of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using the hot-distortion method (DMA apparatus from Multiserw-Morek). The results were combined with linear deformation studies with determination of the linear expansion factor (Netzsch DIL 402C dilatometer). The study showed that the introduction of relaxation additive has a positive effect on the thermal stability of moulding sand by limiting the measured deformation value, in relation to the moulding sand without additive. In addition, a relaxation additive slightly changes the course of the dilatometric curve. Change in the linear dimension of the moulding sand sample with the relaxation additive differs by only 0.05%, in comparison to the moulding sand without additive.
Czasopismo
Rocznik
Tom
Strony
93--98
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Technology, Reymonta Str. 23, 30-059 Kraków, Poland
autor
- AGH University of Technology, Reymonta Str. 23, 30-059 Kraków, Poland
autor
- AGH University of Technology, Reymonta Str. 23, 30-059 Kraków, Poland
autor
- AGH University of Technology, Reymonta Str. 23, 30-059 Kraków, Poland
autor
- AGH University of Technology, Reymonta Str. 23, 30-059 Kraków, Poland
autor
- AGH University of Technology, Reymonta Str. 23, 30-059 Kraków, Poland
Bibliografia
- [1] Dobosz, St.M., Jelínek, P. & Major-Gabryś, K. (2011). Development tendencies of moulding and core sands. China Foundry.8(4), 438-446.
- [2] Dobosz, St.M. & Major-Gabryś, K. (2008). The mechanism of improving the knock-out properties of moulding sands with water glass. Archives of Foundry Engineering. 8(1), 37-42.
- [3] Dobosz, St.M., Major-Gabryś, K. (2006). Self-hardenable moulding sands with water glass and new ester hardener. Materials Engineering. 27(3), 576-579. (in Polish).
- [4] Stachowicz, M. & Granat, K. (2017). Long-term effects of relative humidity on properties of microwave hardened moulding sand with sodium silicate. Archives of Foundry Engineering. 17(3), 127-132. DOI:10.1515/afe-2017-0104.
- [5] Stachowicz, M., Granat, K. & Małachowska, A. (2014). Comparison of classical methods and modern microwave to manufacturing cores from water glass containing moulding sands. Archives of Foundry Engineering. 14(spec. 2), 83-88. (in Polish).
- [6] Holtzer, M., Drożyński, D., Bobrowski, A. & Plaza, W. (2014). Influence of binding rates on strength properties of moulding sands with the GEOPOL binder. Archives of Foundry Engineering. 14(1), 37-40. DOI:10.2478/afe-2014-0009.
- [7] Bobrowski, A., Stypuła, B., Hutera, B., Kmita, A., Drożyński, D. & Starowicz, M. (2012). FTIR spectroscopy of water glass – the binder moulding modified by ZnO nanoparticles. Metalurgija. 51(4). 477-480.
- [8] Pezarski, F., Smoluchowska, E. & Izdebska-Szanda, I. (2008). The use of geopolymer binder for the production of iron alloy castings. The Transactions of the Foundry Research Institute. XLVIII (2), 19-34.
- [9] Löchte, K., Boehm, R. (2006). Inorganic binders: Properties and experience. Word Foundry Congress.
- [10] Manning, R.L. & Zaretskiy, L.S. (1997). New generation of inorganic binders. AFS Transactions. 105, 205-209.
- [11] Bobrowski, A., Holtzer, M., Żymankowska-Kumon, S. & Dańko, R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX group. Archives of Metallurgy and Materials. 60(1), 341-344.
- [12] Major-Gabryś, K. (2016). Enironmentally friendly foundry moulding and core sands. Archives of Foundry Engineering. Katowice-Gliwice. (in Polish).
- [13] Stachowicz, M. (2015). Possibilities of waste binder reclamation using the example of moulding sands with water glass hardened by the conventional drying process. The Transactions of the Foundry Research Institute. 55(2), 29-41.
- [14] Stachowicz, M. & Granat, K. (2014). Research on Reclamation and Activation of Moulding Sands Containing Water-Glass Hardened with Microwaves. Archives of Foundry Engineering. 14(2), 105-110. DOI:10.2478/afe-2014-0046.
- [15] Huafang, W., Zitian, F., Shaoqiang, Y., Fuchu, L. & Xuejie, L. (2012). Wet reclamation of sodium silicate used sand and biological treatment of its wastewater by Nitzschia palea. China Foundry. 9(1), 34-38.
- [16] Kamińska, J. & Dańko, J. (2013). Granulation of After Reclamation Dusts from the Mixed Sands Technology: Water Glass – Resolit. Archives of Foundry Engineering. 13(2), 65-70. DOI: 10.2478/afe-2013-0038.
- [17] Dańko, J., Kamińska, J. & Skrzyński, M. (2013). Reclamation of spent moulding sands with inorganic binders in the vibratory reclaimer Regmas. Archives of Metallurgy and Materials. 58(3), 993-996. 10.2478/amm-2013-0117.
- [18] Fan, Z., Huang, N., Wang, H. & Dong, X. (2005). Dry reusing and wet reclaiming of used sodium silicate sand. China Engineering. 2(1), 38-43.
- [19] Drożyński, D., Bobrowski, A. & Holtzer, M. (2015). Influence of the reclaim addition on properties of moulding sands with the GEOPOL binder. Archives of Foundry Engineering. 15(1), 138-142. DOI:10.1515/afe-2015-0025.
- [20] Izdebska-Szanda, I. & Baliński, A. (2011). New generation of ecological silicate binders, Procedia Engineering. 10, 887-893. DOI:10.1016/j.proeng.2011.04.146.
- [21] Baliński, A. (2017). Effect of the way of modification of hydrated sodium silicate on the effectiveness of the changes in the residual strength of a moulding sand. The Transactions of the Foundry Research Institute. LVII(3), 161-168. DOI: 10.7356/iod.2017.14.
- [22] Pezarski, F., Izdebska-Szanda, I., Smoluchowska, E., Świder, R. & Pysz, A. (2011). Application of molding sands with a geopolymer binder for the production of Al alloy castings. The Transactions of the Foundry Research Institute. LI(2). 23-34. DOI: 10.7356/iod.2011.6. (in Polish).
- [23] Dobosz, St.M., Major-Gabryś, K. Alternative ester hardener for moulding sands with water glass. Materiały XXXI Konferencji Naukowej z okazji Dnia Odlewnika 2007. 33-38. (in Polish).
- [24] Holtzer, M. (2002). Directions of development of molding and core sand with inorganic binders in the aspect of reducing the negative impact on the environment. Archives of Foundry. 3, 50-56. (in Polish).
- [25] Chun-xi, Z. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 013-017.
- [26] Lewandowski, J.L. (1997). Materials for foundry molds. Cracow. Akapit Publisher.
- [27] Jelinek, P. (2004). Bonding systems of reduction compounds. Ostrawa. (in Czech).
- [28] Jelinek, P. (1968). Influence of Al2O3 on the disintegration of CT - mixture. Sbornik vedeckych praci Vysoke Skoly Banske v Ostrave XIV, C.6. Ostrava. (1968).
- [29] Korzeniowska, M. (2008). Effect of hydrated sodium silicate structure as a binder of molding sands on the properties of silica gel at high temperatures. PhD thesis. Kraków.
- [30] Pezarski, F., Izdebska-Szanda, I. & Smoluchowska E. (2008). Research on the improvement of properties and the use of new inorganic binders to production ecological moulding and core sands. The Transactions of the Foundry Research Institute. XLVIII (2), 48-56. DOI: 10.7356/iod.2008.10.
- [31] Pezarski, F., Izdebska-Szanda, I., Smoluchowska, E., Świder, R. & Pysz, A. (2011). Model research on the reclamation process of used moulding sands with a new inorganic binder intended for the production of Al alloy castings. The Transactions of the Foundry Research Institute. LI (3), 37-57. DOI: 10.7356/iod.2011.11.
- [32] Burian, A. & Novotný, J. (2008). Production of molds and cores with an ecological binder system. XI Materiały konferencyjne z Konferencji Odlewniczej Technical 2008. 81-91. (in Polish).
- [33] Bobrowski, A. (2018). Dehydroxylation phenomenon of selected mineral materials from the group of aluminosilicates as a factor determining of knocking out improvement of moulding sands with an inorganic binder. Archives of Foundry Engineering, Katowice-Gliwice.
- [34] Ignaszak, Z. (2008). Chosen aspects of thermo-mechanical phenomena in resin bonded sands by use of Hot Distortion tests. Archives of Foundry Engineering. 8(spec.1), 137-142.
- [35] Ignaszak, Z. (2011). Contribution to determination of the life time of chemically self-hardening mould sand. Archives of Foundry Engineering. 11(4), 55-60.
- [36] Ignaszak, Z., Popielarski, P. & Stręk, T. (2011). Estimation of Coupled Thermo-Physical and Thermo-Mechanical Properties of Porous Thermolabile Ceramic Material using Hot Distortion Plus® Test. Defect and Diffusion Forum Vols. 312-315, 764-769. DOI:10.4028/www.scientific.net/ DDF.312-315.764.
- [37] Ignaszak, Z. & Prunierb, J.B. (2013). Synergy of Practical Knowledge of Molding Sands Reclamation in Heavy Casting Foundry of Iron Alloys. Archives of Foundry Engineering. 13(3), 30-36.
- [38] Jakubski, J. & Dobosz, St.M. (2003). Analysis of thermal deformation of moulding sands using a DMA apparatus. Archives of Foundry. 9, 246-251 (in Polish).
- [39] Szumera, M. Characteristics of selected thermal methods (part 2). LAB. 18(1), 24-33 (in Polish).
- [40] Pieczonka, T. (2010). Dilatometric method for determining the linear coefficient of thermal expansion of solid materials. Krakow. (in Polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f6b8814-2987-47b5-955b-d60cfb284502