PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kruchość wybranych stali konstrukcyjnych po symulowanej ekspozycji pożarowej

Identyfikatory
Warianty tytułu
EN
The brittleness of selected structural steel grades specified after a simulated fire exposure
Języki publikacji
PL
Abstrakty
PL
Przedstawiono wyniki badań odporności wybranych stali stosowanych w budownictwie, poddanych wcześniejszej symulowanej ekspozycji pożarowej, na inicjowanie w nich, a następnie na ewentualną propagację kruchych pęknięć. Tego typu odporność materiału warunkuje jego ponowne zastosowanie po pożarze. Wnioskowanie przeprowadzono na podstawie wyników uzyskanych w zinstrumentalizowanej próbie udarności. Szczegółowe badanie dotyczy kolejno stali S355J2+N, 1H18N9T oraz X2CrNiMoN22-5-3.
EN
The results of a few resistance tests to initiation and then to possible propagation of brittle cracks carried out for selected steel grades used in the construction industry, subjected to prior simulated fire exposure, are presented and discussed in detail. This type of the material resistance determines its re-use after a fire episode. The inference has been made on the basis of the results obtained in the instrumented impact test. Detailed considerations are related to S355J2+N, 1H18N9T and also X2CrNiMoN22-5-3 steel grades, respectively.
Rocznik
Strony
232--239
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Bibliografia
  • [1] Maciejewski K., Sun Y., Gregory O., Ghonem H.: Time-dependent deformation of low carbon steel at elevated temperatures, Materials Science and Engineering A, 534, 2012,147-156.
  • [2] Trilleros J.A., Mato S., Huertas I.: Development of a pilot furnace for testing structural steels under standard fire model, [In:] Chan S.L., Shu G.P. (Eds.), Proceedings of 7th International Conference: Advances in Steel Structures (ICASS), Nanjing, April 14-16, 2012, vol. II, 821-830.
  • [3] Maślak M.: Badania stali konstrukcyjnej po pożarze w kontekście oceny możliwości jej dalszego użytkowania w elementach nośnych ustrojów budowlanych, „Przegląd Budowlany”, 6, 2012, 48-51.
  • [4] Maślak M., Żwirski G.: Zmiany strukturalne w stali konstrukcyjnej wywołane epizodami jej nagrzewania i stygnięcia podczas pożaru, Safety & Fire Technique, 48, 2017, 34-52.
  • [5] Bednarek Z., Kamocka R.: The heating rate impact on parameters characteristic of steel behaviour under fire conditions, Journal of Civil Engineering and Management, vol. XII, 4, 2006, 269-275.
  • [6] Peng P.C., Chi J.H., Cheng J.W.: A study on behavior of steel structures subjected to fire using non-destructive testing, Construction and Building Materials, 128, 2016, 170-175.
  • [7] Müller K., Push G.: Use of Charpy impact testing to evaluate crack arrest fracture toughness, [In:] François D., Pineau A. (Eds.), From Charpy to present impact testing, Elsevier Science and ESIS, 2002, 263-270.
  • [8] Schmitt W., Varflomeyev I., Böhme W.: ModelIing of the Charpy test as a basis for toughness evaluation, [In:] François D., Pineau A. (Eds.), From Charpy to present impact testing, Elsevier Science and ESIS, 2002, 45-56.
  • [9] Server W.L.: Instrumented Charpy test review and application to structural integrity, [In:] François D., Pineau A. (Eds.), From Charpy to present impact testing, Elsevier Science and ESIS, 2002, 205-212.
  • [10] Wallin K., Nevasmaa P., Planman T., Valo M.: Evolution of the Charpy-V test from a quality control test to a materials evaluation tool for structural integrity assessment, [In:] Francois D., Pineau A. (Eds.), From Charpy to present impact testing, Elsevier Science Ltd. and ESIS, 2002, 57-68.
  • [11] Alar Ž.; Mandić D., Dugorepec A., Sakoman M.: Application of instrumented Charpy method in characterization of materials, Interdisciplinary Description of Complex Systems 13 (3), 2015, 479-487.
  • [12] Zajdel P.: Interpretacja rezultatów próby udarności oprzyrządowanym młotem Charpy'ego na potrzeby oceny właściwości stali konstrukcyjnych, "Inżynieria i Budownictwo" 7, 2020, 341-344.
  • [13] Zajdel P.: A suitability assessment using an instrumented impact test of the use of selected structural steel grades on the basis of their changes in response to exposure to fire, Technical Transactions, 118, 2021, 1-14.
  • [14] Maślak M., Pazdanowski M., Stankiewicz M., Zajdel P.: The impact strength of selected steel types after fire. Experimental tests related to simulated fire conditions, [In:] Hozjan P., Pečenko R., Huč S. (Eds.), Proceedings of the 7th International Conference "Applications of Structural Fire Engineering" (ASFE), June 9-11, 2021, Ljubljana, Slovenia.
  • [15] Maślak M., Pazdanowski M., Stankiewicz M., Zajdel P.: Post-fire susceptibility to brittle fracture of selected steel grades used in construction industry - assessment based on the instrumented impact test, Materials, 14, 2021, 3922.
  • [16] Tronskar J.P., Mannan M.A., Lai M.O.: Measurement of fracture initiation toughness and crack resistance in instrumented Charpy impact testing, Engineering Fracture Mechanics, 69, 2002, 321-338.
  • [17] Canale L.C.F., Mesquita R.A., Totten G.E.: Failure analysis of heat treated steel components, ASM International Materials Park, Ohio, USA, 2008.
  • [18] ASTM E 2298-18, Standard test method for instrumented impact testing of metallic materials.
  • [19] EN-ISO 14556, 2015, Metallic materials - Charpy V-notch pendulum impact test, Instrumented test method.
  • [20] François D.: Micromechanisms and the Charpy transition curve, [In:] François D., Pineau A. (Eds.), From Charpy to present impact testing, Elsevier Science and ESIS, 2002, 21-31.
  • [21] Curry D., Knott J.F.: Effect of microstructure on cleavage fracture stress in steel, Metal Science, 12, 1978,511-514.
  • [22] Mengqi Z., Shanwu Y., Farong W.: Competition mechanism of brittle-ductile transition of metals under tensile condition, Mechanics of Materials, 137, 2019, 103138.
  • [23] Chen L., Liu W., Yu L., Cheng Y., Ren K., Sui H., Yi x., Duan H.: Probabilistic and constitutive models for ductile-to-brittle transition in steels: A competition between cleavage and ductile fracture, Journal of the Mechanics and Physics of Solids, 135, 2020, 103809.
  • [24] Hahn G. T.: The influence of microstructure on brittle fracture toughness, Metallurgical Transactions A, 15A, 1984, 947-959.
  • [25] Knott J.F.: The micro-mechanisms of fracture in steels used for high integrity structural components, [In:] Hirsch P., Lidbury D. (Eds.), Fracture, plastic flow and structural integrity, Proceedings of the 7th Symposium organized by the Technical Advisory Group on Structural Integrity in the Nuclear Industry, CRC Press, 2000.
  • [26] Lin T., Evans A.G., Ritchie R.O.: Stochastic modeling of the independent roles of particle size and grain size in transgranular cleavage fracture, Metallurgical Transactions A, 18A, 1987, 641-651.
  • [27] PN-EN 1993-1-4, Eurokod 3 - Projektowanie konstrukcji stalowych, Część 1-4: Reguły ogólne - Reguły uzupełniające dla konstrukcji ze stali nierdzewnych.
  • [28] Kharchenko V.V., Kondryakov E.A., Zhamaka V.N., Babutskii A.A., Babutskii A.I.: The effect of temperature and loading rate on the crack initiation and propagation energy in carbon steel Charpy specimens, Strength of Materials, 38, 5, 2006, 535-541.
  • [29] Klepaczko J.R.: Impact loading on specimens of different geometries, test methods and results, [In:] Klepaczko J.R. (Ed.), Crack dynamics in metallic materials, Springer-Verlag, Wien, 1990, 396-398.
  • [30] Strnadel B., Matocha K.: Testing samples size effect on notch toughness of structural steels, Metalurgija 48, 4, 2009, 253-256.
  • [31] EN-ISO 148-1, 2006, Metallic materials - Charpy pendulum impact test. Part 1: Test method.
  • [32] ASTM E 23-92, Standard test methods for notched bar impact testing of metallic materials.
  • [33] Samuel K.G., Sreenivasan P.R., Ray S.K., Rodriguez P.: Evaluating of ageing-induced embrittlement in an austenitic stainless steel by instrumented impact testing, Journal of Nuclear Materials, 150, 1987, 78-84.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f67f581-cd5c-40c1-9b83-3f20382355b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.