PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coating textiles with antibacterial nanoparticles using the sonochemical techniqe

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pokrywanie tkanin nanocząstkami antybakteryjnymi z wykorzystaniem techniki sonochemicznej
Języki publikacji
EN
Abstrakty
EN
This chapter reviews the research on antibacterial functionalization of textiles with inorganic nanoparticles (Ag, MgO, Al2O3) by the sonochemical method. Sonochemistry is one of the most efficient techniques for the synthesis of nanosized materials, wherein ultrasonic waves in the frequency range of 20 kHz to 1 MHz serve as a driving force for chemical reactions. Sonochemical reactions are dependent on acoustic cavitation: the formation, growth, and explosive collapse of bubbles in irradiated liquids. Extreme conditions are developed when the bubbles collapse (temperature >5000 K, pressure >1000 atm, and cooling rates >109 K/sec), resulting in the breaking and forming of chemical bonds. The deposition of nanoparticles on the surface of natural and synthetic yarns and fabrics (wool, cotton, nylon, polyester) may be achieved using ultrasound irradiation. This process produces a uniform coating of nanoparticles on the textile surface with different functional groups. The coating can be performed by an in situ process, where the nanoparticles are formed and immediately propelled to the surface of the fabric. This approach was demonstrated with nanosilver. Alternatively, the sonochemical process can be used as a "throwing stone" technique, where previously synthesized nanoparticles are sonicated in the presence of the fabric. This process was shown with MgO and Al2O3 nanoparticles, which were propelled to the surface by microjets and adhered strongly to the textile without any additional binder. This phenomenon was explained because of the local melting of the substrate due to the high rate and temperature of nanoparticles propelled at the solid surface by sonochemical microjets. The activity of the fabric finishing with antibacterial nanoparticles was tested against Gram-negative and Gram-positive bacteria cultures. A significant bactericidal effect was demonstrated in both cases, even at a low concentration, below 1 wt.% of nanoparticles in the fabric.
PL
Dokonano przeglądu badań nad funkcjonalizacją antybakteryjną wyrobów włókienniczych nanocząsteczkami nieorganicznymi (Ag, MgO, Al2O3 ) metodą sonochemiczną. Sonochemia jest jedną z najskuteczniejszych technik syntezy nanomateriałów, w której fale ultradźwiękowe w zakresie częstotliwości od 20 kHz do 1 MHz służą jako siła napędowa dla reakcji chemicznych. Reakcje sonochemiczne są zależne od kawitacji akustycznej: powstawania, wzrostu i wybuchowego rozpadu pęcherzyków w napromieniowanych cieczach. Ekstremalne warunki powstają, gdy pęcherzyki zapadają się (temperatura > 5000 K, ciśnienie > 1000 atm, szybkość chłodzenia > 109 K/s), powodując pękanie i tworzenie wiązań chemicznych. Osadzanie nanocząsteczek na powierzchni przędz i tkanin naturalnych i syntetycznych (wełna, bawełna, nylon, poliester) można uzyskać za pomocą napromieniowania ultradźwiękowego. W tym procesie uzyskuje się jednolitą powłokę nanocząsteczek na powierzchni tkaniny z różnymi grupami funkcyjnymi. Powłokę można prowadzić w procesie in situ, w którym nanocząsteczki są formowane i natychmiast wyrzucane na powierzchnię tkaniny. To podejście zostało wykazane z nanosrebrem. Alternatywnie, proces sonochemiczny może być stosowany jako technika „rzucania kamieniami”, w którym wcześniej zsyntetyzowane nanocząsteczki są sonikowane w obecności tkaniny. Proces ten został przedstawiony za pomocą nanocząsteczek MgO i Al2O3, które zostały wyrzucone na powierzchnię za pomocą mikrodysz i silnie przylegały do tkaniny bez dodatkowego spoiwa. Zjawisko to tłumaczy się miejscowym topnieniem podłoża z powodu wysokiej szybkości i temperatury nanocząsteczek wyrzucanych na powierzchnię stałą przez sonochemiczne mikrodysze. Aktywność tkaniny wykończonej nanocząsteczkami przeciwbakteryjnymi badano na kulturach bakterii Gram-ujemnych i Gram-dodatnich. Znaczące działanie bakteriobójcze wykazano w obu przypadkach, nawet w niskim stężeniu, poniżej 1% wag. nanocząsteczek w tkaninie.
Twórcy
autor
  • Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Izrael
  • Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Izrael
autor
  • Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Izrael
Bibliografia
  • 1. Patra J.P., Gouda S.: Application of nanotechnology in textile engineering: An overview. Journal of Engineering and Technology Research, 2013, 5(5), pp. 104-111.
  • 2. Yetisen A.K., Qu H., Manbachi A., Butt H., Dokmeci M.R., Hinestroza J.P., Skorobogatiy M., Khademhosseini A., Yun S.H.: Nanotechnology in textile. ACS Nano, 2016, 10, pp. 3042-3068.
  • 3. Morais D.S., Guedes R.M., Lopes M.A.: Antimicrobial approaches for textiles: from research to market. Materials, 2016, 9, pp. 498-519.
  • 4. Wu Y., Yang Y., Liu H., Yao X., Leng F., Chen Y., Tian W.: Long-term antibacterial protected cotton fabric coating by controlled release of chlorhexidine gluconate from halloysite nanotubes. RSC Advances, 2017, 7, pp. 18917-18925.
  • 5. Singh R., Smitha M.S., Singh S.P.: The role of nanotechnology in combating multi-drug resistant bacteria. Journal of Nanoscience and Nanotechnology, 2014, 14, pp. 4745-4756.
  • 6. Pelgrift R.Y., Friedman A.J.: Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 2013, 65, pp. 1803-1815.
  • 7. Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R.: Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015, art. 246012.
  • 8. Rai M., Yadav A., Gade A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009, 27(1), pp. 76-83.
  • 9. Zille A., Almeida L., Amorim T., Carneiro N., Esteves M.F., Silva C.J., Souto A.P.: Application of nanotechnology in antimicrobial finishing of biomedical textiles. Materials Research Express, 2014, 1, art. 032003.
  • 10. Gokarneshan N., Velumani K.: Application of nano silver particles on textile materials for improvement of antibacterial finishes. Global Journal of Nanomedicince, 2017, 2(3), art. 555586.
  • 11. Pietrzak K., Gutarowska B., Machnowski W., Mikołajczyk U.: Antimicrobial properties of silver nanoparticles misting on cotton fabrics. Textile Research Journal, 2016, 86(8), pp. 812-822.
  • 12. Kim K.T., Truong L., Wehmas L., Tanguay R.L.: Silver nanoparticle toxicity in the embryonic zebrafish is governed by particle dispersion and ionic environment. Nanotechnology, 2013, art. 115101.
  • 13. Gaillet S., Rouanet J.M.: Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms - A review. Food and Chemical Toxicology, 2015, 77, pp. 58-63.
  • 14. León-Silva S, Fernández-Luqueño F., López- -Valdez F.: Silver nanoparticles (Ag NPs) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollution, 2016, 227(9), art. 306.
  • 15. Marambio-Jones C., Hoek E.M.V.: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12(5), pp. 1531-1551.
  • 16. Levard C., Hotze E.M., Lowry G.V., Brown G.E.: Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science & Technology, 2012, 46, pp. 6900-6914.
  • 17. Chernousova S., Epple M.: Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 2012, 51, pp. 2-20.
  • 18. Rivero P.J., Urrutia A., Goicoechea J., Arregui F.J.: Nanomaterials for functional textiles and fibers. Nanoscale Research Letters, 2015, 10, pp. 501-522.
  • 19. FDA: Centers & Offices. [Online]. 2009. [Accessed 15 November 2018]. Available from: www.fda.gov/AboutFDA/CentersOffices.
  • 20. Faunce T., Watal A.: Nanosilver and global public health: international regulatory issues. Nanomedicine, 2010, 5(4), pp. 617-632.
  • 21. Dastjerdi R., Montazer M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on antimicrobial properties. Colloids Surf. B Biointerfaces, 2010, 79, pp. 5-18.
  • 22. Simoncic B., Klemencic D.: Preparation and performance of silver as an antimicrobial agent for textiles: A review. Textile Research Journal, 2016, 86, pp. 210-223.
  • 23. Zhang G., Liu Y., Gao X., Chen Y.: Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles. Nanoscale Research Letters, 2014, 9, art. 216.
  • 24. Liu H., Lv M., Deng B., Li J., Yu M., Huang Q., Fan C.: Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. Scientific Reports, 2014, 4, art. 5920.
  • 25. Babaahmadi V., Montazer M.: A new route to synthesis silver nanoparticles on polyamide fabric using stannous chloride. Journal of the Textile Institute, 2015, 106, pp. 970-977.
  • 26. Palza H.: Antimicrobial polymers with metal nanoparticles. International Journal of Molecular Sciences, 2015, 16, pp. 2099-2116.
  • 27. Xu Q.B., Xie L.J., Diao H., Li F., Zhang Y.Y., Fu F.Y., Liu X.D.: Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydrate Polymers, 2017, 177, pp. 187-193.
  • 28. Thomas V., Bajpai M., Bajpai S.K.: In situ formation of silver nanoparticles within chitosan-attached cotton fabric for antibacterial property. Journal of Industrial Textiles, 2011, 40(3), pp. 229-245.
  • 29. Chattopadhyay D., Inamdar M.S.: Improvement in properties of cotton fabric through synthesized nano-chitosan application. Indian Journal of Fibre & Textile Research, 2013, 38, pp. 14-21.
  • 30. Ali S.W., Rajendran S., Joshi M.: Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 2011, 83(2), pp. 438-446.
  • 31. Shahidi S., Ghoranneviss M.: Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Clothing and Textiles Research Journal, 2016, 34, pp. 37-47.
  • 32. Gorenšek M., Gorjanc M., Bukošek V., Kovač J., Petrović Z., Puač N.: Functionalization of polyester fabric by Ar/N2 plasma and silver. Textile Research Journal, 2010, 80, pp. 1633-1642.
  • 33. Gorjanc M., Bukošek V., Gorenšek M., Mozetič M.: CF4 plasma and silver functionalized cotton. Textile Research Journal, 2010, 80, pp. 2204-2213.
  • 34. Gedanken A.: Doping nanoparticles into polymers and ceramics using ultrasound radiation. Ultrasonics Sonochemistry, 2007, 14, pp. 418-430.
  • 35. Suslick K.S.: The chemical effect of ultrasound. Scientific American, 1989, 260, pp. 80-86.
  • 36. Suslick K.S., Price G.J.: Application of ultrasound to materials chemistry. Annual Review of Materials Research, 1999, 29, pp. 295-326.
  • 37. Mason T.J.: Sonochemistry. London: Royal Society of Chemistry Press, 1990.
  • 38. Gedanken A., Perkas N.: Sonochemical coatings of nanoparticles on flat and curved ceramic and polymeric surfaces. In: Rizzo M., Bruno G. (Eds.): Surface Coatings. Nova Science Publishers Inc., 2009, pp. 213-236.
  • 39. Perelshtein I., Ruderman E., Perkas N., Beddow J., Singh G., Vinatoru M., Joyce E., Mason T,G., Blanes M., Molla K., Gedanken A.: The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties. Cellulose, 2013, 20, pp. 1215-1221.
  • 40. Perelshtein I., Applerot G., Perkas N., Grinblat J., Hulla E., Wehrschetz-Sigl E., Hasmann A., Guebitz G.M.: Ultrasound radiation as a “throwing stones” technique for the production of antibacterial nanocomposite textiles. ACS Applied Materials & Interfaces, 2010, 2, pp. 1999-2004.
  • 41. Perkas N., Gedanken A., Wehrschuetz-Sigl J., Guebitz G.M., Perelshtein I., Applerot G.: Innovative inorganic nanoparticles with antibacterial properties attached to textiles by Sonochemistry. In: Altavilla C., Enrico C. (Eds.): Inorganic Nanoparticles: Synthesis, Applications, and Perspectives. CRC Press, 2011, pp. 367-391.
  • 42. Perelshtein I., Perkas N., Gedanken A.: Making the hospitals a safer place by the sonochemical coating of textiles by antibacterial nanoparticles. In: Grumezescu A. (Ed.): Surface Chemistry of Nanobiomaterials: Applications of Nanobiomaterials. Elsevier Inc., 2016, pp.71-102.
  • 43. Chae D.W., Oh S.G., Kim B.C.: Effect of silver nanoparticles on the dynamic crystallization behavior of nylon-6. Journal of Polymer Science Part B: Polymer Physics, 2004, 42, pp. 790-799.
  • 44. Damerchely R., Yazdanshenas M.E., Rashidi A.S., Khajavi R.: Morphology and mechanical properties of antibacterial nylon 6/nano-silver nano-composite multifilament yarns. Textile Research Journal, 2011, 81, pp. 1694-1701.
  • 45. Choi S.H., Lee K.P., Park S.B.: Preparation and characterization of poly(ester)-silver and nylonsilver nanocomposites. Studies in Surface Science and Catalysis, 2003, 146, pp. 93-96.
  • 46. Mahltig B., Haufe H., Bottcher H.: Functionalisation of textiles by inorganic sol–gel coatings. Journal of Materials Chemistry, 2005, 15, pp. 4385-4398.
  • 47. España-Sanchez B.L., Avila-Orta C.A., NeiraVelazquez M.G., Solis-Rosales S.G., GonzalezMorones P.: Preparation of polymer nanocomposites with enhanced antimicrobial properties. MRS Proceedings, 2013, 1479, pp. 57-62.
  • 48. Kvitek L., Panáček A., Soukupová J., Kolář M., Večeřová R, Prucek R., Holecová M., Zboril R.: Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). Journal of Physical Chemistry C, 2008, 112, pp. 5825-5834.
  • 49. Aymonier C., Schlotterbeck U., Antonietti L., Zacharias P., Thomann R., Tille J.C., Mecking S.: Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chemical Communications, 2002, 24, pp. 3018-3019.
  • 50. Perkas N., Amirian G., Dubinsky S., Gazit S., Gedanken A.: Ultrasound-assisted coating of nylon 6,6 with silver nanoparticles, and its antibacterial activity. Journal of Applied Polymer Science, 2007, 104(3), pp. 1423-1430.
  • 51. Carotenuto G.: Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Applied Organometallic Chemistry, 2001, 15, pp. 344-351.
  • 52. Karpov S.V., Basko A.L., Popov A.K., Slabko V.V.: Optical spectra of silver colloids within the framework of fractal physics. Colloid Journal, 2000, 62(6), pp. 699-713.
  • 53. Taneja P., Ayyub P., Chandra R.: Size dependence of the optical spectrum in nanocrystalline silver. Physical Review B, 2002, 65, pp. 245412-245418.
  • 54. Roy D., Barber Z.H., Clyne T.W.: Ag nanoparticle induced surface enhanced Raman Spectroscopy of chemical vapor deposition diamond thinfilms prepared by hot filament chemical vapor deposition. Journal of Applied Physics, 2002, 91(9), pp. 685-6088.
  • 55. Xu B., Lu Y.: Chemical modification and surface reactions on carbon fibers studied by SERS. Journal of Raman Spectroscopy, 2006, 37, pp. 1423-1426.
  • 56. Cardamone J.M.: Biodeterioration of wool by microorganisms and insects. Bioactive Fibers and Polymers, 2001, 16, pp. 293-298.
  • 57. Ki H.Y., Kim J.H., Kwon S.C., Jeong S.H.: A study on multifunctional wool textiles treated with nanosized silver. Journal of Materials Science, 2007, 42(19), pp. 8020-8024.
  • 58. Kelly F.M., Johnston J.H.: Colored and functional silver nanoparticle-wool fiber composites. ACS Applied Materials & Interfaces, 2011, 3(4), pp. 1083-1092.
  • 59. Pollini M., Paladini F., Licciulli A., Maffezzoli A., Nicolais L., Sannino A.: Silver-coated wool yarns with durable antibacterial properties. Journal of Applied Polymer Science, 2012, 125, pp. 2239-2244.
  • 60. Hadad L., Perkas N., Gofer Y., Calderon-Moreno J., Ghule A., Gedanken A.: Sonochemical deposition of silver nanoparticles on wool fibers. Journal of Applied Polymer Science, 2007, 104, pp. 1732-1737.
  • 61. Perelshtein I., Applerot G., Perkas N., Guibert G., Mikhailov S., Gedanken A.: Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology, 2008, 19, art. 245705.
  • 62. Bertrand M., Weber G., Schoefs B.: Metal determination and quantification in biological material using particle-induced X-ray emission. TrAC Trends in Analytical Chemistry, 2003, 22, pp. 254-262.
  • 63. Chun-Nam L., Chi-Ming H., Rong C., Qing-Yu H., Wing-Yiu Y., Hongzhe S, Kwong-Hang T.P., Jen-Fu C., Chi-Ming C.: Silver nanoparticles: partial oxidation and antibacterial activities. JBIC Journal of Biological Inorganic Chemistry, 2007, 12, pp. 527-534.
  • 64. Huang L., Li D.Q., Lin Y.L., Wei M., Evans D.G., Duan X.: Controllable preparation of nano-MgO and investigation of its bactericidal properties. Journal of Inorganic Biochemistry, 2005, 99, pp. 986-993.
  • 65. Ohira T., Kawamura M., Iida Y., Fukuda M., Yamamoto O.: Influence of the mixing ratio on antibacterial characteristics of MgO-ZnO solid solution in two phase coexistence region. Journal of the Ceramic Society of Japan, 2008, 116, pp. 1234-1237.
  • 66. Makhluf S., Dror R., Nitzan Y., Abramovich Y., Jelinek R., Gedanken A.: Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Advanced Functional Materials, 2005, 15, pp. 1708-1715.
  • 67. Seo D.J., Park S.B., Kang Y.C., Choy K.L.: Formation of ZnO, MgO and NiO nanoparticles from aqueous droplets in flame reactor. Journal of Nanoparticle Research, 2003, 5, pp. 199-210.
  • 68. Stengl V., Bakardjieva S., Marikova M., Bezdicka P., Subrt J.: Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mgalkoxides. Materials Letters, 2003, 57, pp. 3998-4003.
  • 69. Sawai J., Kojima H., Igarashi H., Hashimoto A., Shoji S., Sawaki T., Hakoda A., Kawada E., Kokugan T., Shimizu M.: Antibacterial characteristics of magnesium oxide powder. World Journal of Microbiology and Biotechnology, 2000, 16, pp. 187-194.
  • 70. Ardizzone S., Bianchi C.L., Vercelli B.: MgO powders: interplay between adsorbed species and localization of basic sites. Applied Surface Science, 1998, 126, pp. 169-175.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f67a2a0-cf10-46ed-94c2-5cad556622e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.