Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most studies on the behavior of pollutants in the groundwater environment are carried out in laboratories, and the results are then implemented at local and regional levels using model simulations or analytical solutions. Column experiments are used to determine the transport characteristics of inorganic and organic chemicals in the soil and water environment. Although column experiments have been conducted regularly for many years, there is currently no established standard protocol for setting up and conducting them to ensure consistent results. The repeatability of column experiments was evaluated for soils, which differ primarily in the silt and clay content, using a conservative tracer susceptible only to advection and dispersion processes to reduce the number of variables affecting the results of the study which arise in a case of using reactive contaminants. The column experiments performed according to the adopted methodology are characterized by high repeatability of the obtained test results for the transport parameters, regardless of the type of injection or the chosen column length (only a small-scale effect is visible). Based on the results, it can be noticed that for the same soil the values of the pore–water velocity for different types of injections and column lengths are very similar. The percentage difference between the values of pore–water velocity obtained for both tested soils does not exceed 5% and for individual pairs of parallel column experiments it does not exceed 3%.
Czasopismo
Rocznik
Tom
Strony
137--150
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
- AGH University of Kraków, Mickiewicza 30 Av., 30-059 Kraków, Poland
autor
- AGH University of Kraków, Mickiewicza 30 Av., 30-059 Kraków, Poland
autor
- AGH University of Kraków, Mickiewicza 30 Av., 30-059 Kraków, Poland
autor
- Izmir Institute of Technology, 35430- Urla-Izmir, Türkiye
Bibliografia
- Banzhaf S. & Hebig K.H., 2016. Use of column experiments to investigate the fate of organic micropollutants – A review. Hydrology and Earth System Sciences 20, 3719–3737. https://doi.org/10.5194/hess-20-3719-2016.
- BIPM, 2024. Joint Committee for Guides in Metrology BIPM. https://jcgm.bipm.org/vim/en/2.26.html/.
- Campos-M M. & Campos-C R., 2017. Applications of quartering method in soils and foods. International Journal of Engineering Research and Applications 7, 35–39. https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.
- Casey F.X., Šimůnek J., Lee J., Larsen G.L. & Hakk H., 2005. Sorption, mobility, and transformation of estrogenic hormones in natural soil. Journal of Environmental Quality 34, 1372–1379. https://doi.org/10.2134/jeq2004.0290.
- Ellison S.L.R. & Williams A. (Eds), 2012. Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement. 3rd edition. http://www.measurementuncertainty.org/mu/QUAM2000-1.pdf.
- Flores-Céspedes F., González-Pradas E., Fernández-Pérez M., Villafranca-Sánchez M., Socías-Viciana M. & Ureña-Amate M.D., 2002. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. Journal of Environment Quality 31, 880. https://doi.org/10.2134/jeq2002.0880
- Gibert O., Hernández Amphos M., Vilanova E. & Cornellà O., 2014. Guidelining protocol for soil-column experiments assessing fate and transport of trace organics. Demeau, Brussels, Belgium, 3(54). www.demeau-fp7.euHalligan S., 2002. Reproducibility, repeatability, correlation and measurement error. British Journal of Radiology 75, 193–194. https://doi.org/https://doi.org/10.1259/bjr.75.890.750193.
- Halligan S., 2002. Reproducibility, repeatability, correlation and measurement error. British Journal of Radi ology 75, 193–194. https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.
- Hebig K.H., Nödler K., Licha T. & Scheytt T.J., 2014. Impact of materials used in lab and field experiments on the recovery of organic micropollutants. Science of the Total Environment 473, 125–131. https://doi.org/10.1016/j.scitotenv.2013.12.004.
- Kiecak A., Breuer F. & Stumpp C., 2020. Column experiments on sorption coefficients and biodegradation rates of selected pharmaceuticals in three aquifer sediments. Water 12. https://doi.org/10.3390/w12010014.
- Kurwadkar S., Wheat R., McGahan D. G. & Mitchell F., 2014. Evaluation of leaching potential of three systemic neonicotinoid insecticides in vineyard soil. Journal of Contaminant Hydrology 170, 86–94. https://doi.org/10.1016/j.jconhyd.2014.09.009
- Lehmann K., Schaefer S., Babin D., Köhne J.M., Schlüter S., Smalla K., Vogel H.J., & Totsche K.U., 2018. Selective transport and retention of organic matter and bacteria shapes initial pedogenesis in artificial soil – A two-layer column study. Geoderma 325, 37–48. https://doi.org/10.1016/j.geoderma.2018.03.016.
- Leiva J.A., Nkedi-Kizza P., Morgan K.T. & Kadyampakeni D.M., 2017. Imidacloprid transport and sorption nonequilibrium in single and multilayered columns of Immokalee fine sand. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0183767.
- Lewis J. & Sjöstrom J., 2010. Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Journal of Contaminant Hydrology 115, 1–13. https://doi.org/10.1016/j.jconhyd.2010.04.001.
- Liu F., Xu B., He Y., Brookes P.C., & Xu J., 2019. Co-transport of phenanthrene and pentachlorophenol by natural soil nanoparticles through saturated sand columns. Environmental Pollution 249, 406–413. https://doi.org/10.1016/j.envpol.2019.03.052.
- Magnusson B., Näykki T., Hovind H., Krysell M. & Sahlin E., 2017. Handbook for calculation of measurement uncertainty in environmental laboratories. NORDTEST NT TR 537 edition 4. 2017:11.
- Marciniak M., Małoszewski P. & Okońska M., 2006. Wpływ efektu skali eksperymentu kolumnowego na identyfikację parametrów migracji znaczników metodą rozwiązań analitycznych i modelowania numerycznego [The influence of column experiment scale effect on the tracer migration parameter identification by the methods of analytical solutions and numerical modelling]. Geologos 10, 167–187.
- Masipan T., Chotpantarat S. & Boonkaewwan S., 2016. Experimental and modelling investigations of tracer transport in variably saturated agricultural soil of Thailand: Column study. Sustainable Environment Research 26, 97–101. https://doi.org/10.1016/j.serj.2016.04.005.
- Mucha J. & Nieć M., 2012. Opróbowanie złóż kopalin. IGSMiE PAN, Kraków.
- NIST, 2024. National Institute for Standards and Technology. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. http://physics.nist.gov/Pubs/guidelines/contents.html.
- Okońska M., Marciniak M., Zembrzuska J. & Kaczmarek M., 2019. Laboratory investigations of diclofenac migration in saturated porous media – A case study. Geologos 25, 213–223. https://doi.org/10.2478/logos-2019-0023.
- Parker J.C. & Vangenuchten M.T., 1984. Determining transport parameters from laboratory and field tracer experiments. Virginia Agricultural Experiment Station Bulletin 84, 1–43.
- Peña A., Palma R. & Mingorance M.D., 2011. Transport of dimethoate through a Mediterranean soil under flowing surfactant solutions and treated wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects 384, 507–512. https://doi.org/10.1016/j.colsurfa.2011.05.024.
- Pietrzak D., Kania J., Kmiecik E. & Wator K., 2019. Identification of transport parameters of chlorides in different soils on the basis of column studies. Geologos 25, 225–229. https://doi.org/10.2478/logos-2019-0024.
- Pietrzak D., Kania J. & Kmiecik E., 2022. Transport parameters of selected neonicotinoids in different aquifer materials using batch sorption tests. Geology, Geophysics and Environment 48, 367–379. https://doi.org/10.7494/geol.2022.48.4.367.
- Pietrzak D., Kania J., Kmiecik E. & Baba A., 2024. Risk analysis for groundwater intakes based on the example of neonicotinoids. Chemosphere 358. https://doi.org/10.1016/j.chemosphere.2024.142244.
- PN-EN ISO 21268-3, 2020. Soil quality – Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil-like materials – Part 3: Up-flow percolation test.
- Ritschel T. & Totsche K.U., 2016. Closed-flow column experiments – Insights into solute transport provided by a damped oscillating breakthrough behavior. Water Resources Research 52, 2206–2221. https://doi.org/10.1111/j.1752-1688.1969.tb04897.x.
- Rodríguez-Liébana J.A., Mingorance M.D. & Peña A., 2018. Thiacloprid adsorption and leaching in soil: Effect of the composition of irrigation solutions. Science of the Total Environment 610–611, 367–376. https://doi.org/10.1016/j.scitotenv.2017.08.028.
- Schaffer M., Kröger K.F., Nödler K., Ayora C., Carrera J., Hernández M. & Licha T., 2015. Influence of a compost layer on the attenuation of 28 selected organic micropollutants under realistic soil aquifer treatment conditions: Insights from a large scale column experiment. Water Research 74, 110–121. https://doi.org/10.1016/j.watres.2015.02.010.
- Scheytt T.J., Mersmann P. & Heberer T., 2006. Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology 83, 53–69. https://doi.org/10.1016/j.jconhyd.2005.11.002.
- Selim H.M., Jeong C.Y. & Elbana T.A., 2010. Transport of imidacloprid in soils: Miscible displacement experiments. Soil Science 175, 375–381. https://doi.org/10.1097/SS.0b013e3181ebc9a2.
- Sieczka A. & Koda E., 2018. Evaluation of chlorides transport parameters in natural soils based on laboratory studies. MendelNet 2017. Proceedings of 24th International PhD Students Conference, pp. 921–926.
- Siemens J., Huschek G., Walshe G., Siebe C., Kasteel R., Wulf S., Clemens J., & Kaupenjohann M., 2010. Transport of pharmaceuticals in columns of a wastewater-irrigated Mexican clay soil. Journal of Environmental Quality 39, 1201–1210. https://doi.org/10.2134/jeq2009.0105.
- da Silva R.B. & Williams A. (Eds), 2015. Eurachem/CITAC guide: Setting and using target uncertainty in chemical measurement. www.eurachem.org.
- Simunek J., Van Genuchten M. T., Sejna M., Toride N. & Leij F.J., 1999. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0. International Ground Water Modeling Center.
- Toride N., 1995. The CXTFIT code for estimating transport parameters from laboratory and field tracer experiments. US Salinity Laboratory Research Report 137.
- Vitale C.M., Terzaghi E., Zati D. & Di Guardo A., 2018. How good are the predictions of mobility of aged polychlorinated biphenyls (PCBs) in soil? Insights from a soil column experiment. Science of the Total Environment 645, 865–875. https://doi.org/10.1016/j.scitotenv.2018.07.216.
- Williams A. & Magnusson B. (Eds), 2007. Eurachem/CITAC guide: Use of uncertainty information in compliance assessment. www.eurachem.org’.
- Yasutaka T., Naka A., Sakanakura H., Kurosawa A., Inui T., Takeo M., Inoba S., Watanabe Y., Fujikawa T., Miura T., Miyaguchi S., Nakajou K., Sumikura M., Ito K., Tamoto S., Tatsuhara T., Chida T., Hirata K., Ohori K., Someya M., Katoh M., Umino M., Negishi M., Ito K., Kojima J. & Ogawa S., 2017. Reproducibility of up-flow column percolation tests for contaminated soils. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0178979.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f63c1f4-5b0e-46cf-b880-c50e61b6b798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.