PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary Investigation of Bioplastics from Durian Seed Starch Recovery Using PEG 400 for Reducing Marine Debris

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plastic is a source of pollution both on land and sea that can disrupt balance of the ecosystem. The characteristic of plastic as a material is difficult to decompose causing problems for environment. Various research needed to produce bioplastics that easily biodegradable in about 60 days. Biodegradable plastics are made from organic materials in the form of starch. Durian seed starch is one of the potential raw materials that can be used as bioplastics. Durian fruit is one of the typical fruits in Indonesia, at present seeds of durian had not been used as raw materials to produce object with economic values. It is necessary to combine the processing of durian seeds through a recovery approach in the form of processing into bioplastics. The aim of study is to analyze the effect of adding PEG 400 as a plasticizer plus calcium carbonate as a solidifier. Tests were carried out on swelling ability, acid and base resistance, tensile strength and biodegradation. The variation of the addition of PEG 400 is 4%; 30%; 50% and 70% were carried out to analyze the effect of different concentrations of plasticizers. None of the tensile test results met SNI 7188-11:2018 but all variations had biodegradation values according to SNI 7188-11:2018. Swelling test resulted from 4% and 30% are 1.2% and 2.1% respectively.
Słowa kluczowe
EN
bioplastics   durian   seed   PEG   intact  
Rocznik
Strony
12--17
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • Design and Construction Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • Marine Electrical Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Bibliografia
  • 1. Anas A.K., Ariefta N., Nurfiana Y., Rohaeti E.2016. Pengaruh Penambahan 1,4-Butanadiol dan Polietilen Glikol (PEG) 1000 terhadap Kemudahan Biodegradasi Bioplastik dari Biji Nangka (Artocarpus heterophyllus). Jurnal Eksakta, 16(2), 115–123.
  • 2. Baraheng S., Taewee T. Karrila. 2019. Chemical and functional properties of durian (Durio zibethinus Murr.) Seed flour and starch. Food Bioscience, 30(2), 100412.
  • 3. Beevi R.K., Fathima A.R.F., Fathima A.I A., Noorjahan T. M., Deepika T. C.M. 2020. Bioplastic synthesis using banana peels and potato starch characterization. International Journal of Scientific & Technology Research, 9(1).
  • 4. Bibers I., Tupureina V., Dzene A., Kalnins M. 1999. Improvement of the deformative characteristics of poly-b-hydroxybutyrate by plasticization. Mech Compos Mater, 35(4), 357–364.
  • 5. Chen J., Chen F., Meng Y., Wang S., Long Z. 2019. Oxidized microcrystalline cellulose improve thermoplastic starch-based composite films: Thermal, mechanical and water-solubility properties. Polymer, 168, 228–235.
  • 6. Endres H.J., 2019. Bioplastics, In: K. Wagemann and N. Tippkötter (Eds.) Biorefineries. Springer International Publishing: Cham, Switzerland, 427–468.
  • 7. Ginting M.H.S., Hasibuan R., Lubis M,, Alanjani F,. Winoti F.A., Siregar R.C. 2018. Utilization of Avocado Seeds as Bioplastic Films Filler Chitosan and Ethylene Glycol Plasticizer. Asian Journal of Chemistry, 30(7), 1569–1573.
  • 8. Gironi F., Piemonte V. 2011. Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sources, Part A, 33, 1949–1959.
  • 9. González A., Igarzabal A.C. 2013. Soy protein-Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hyd, 33(2), 289–296.
  • 10. Hendra M.S., Ginting, Kristiani M., Amelia Y., Hasibuan R. 2016. The Effect of Chitosan, Sorbitol, and Heating Temperature Bioplastic Solution on Mechanical Properties of Bioplastic from Durian Seed Starch (Durio zibehinus). Int. Journal of Engineering Research and Applications, 6(1), 33–38.
  • 11. Hongbo L., Huneault, M.A., 2011. Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. Journal of Applied Polymer Science, 119, 2439–2448.
  • 12. Hubbe M.A., Lavoine N., Lucian A., Lucia, Dou C. 2021. Formulation bioplastic composite for biodegradability, recycling, and performance: a review. Bioresources, 16(1), 2021–2083.
  • 13. Huntrakul K., Yoksan R., Sane A., Harnkarnsujarit N. 2020. Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and shelf life, 24, 100480
  • 14. Imre B., Pukánszky B. 2013. Compatibilization in bio-based and biodegradable polymer blends, European Polymer Journal, 49(6), 1215–1233.
  • 15. Irhamni, Rambe M.S., Zulfalina, Rahmi. 2014. Analisa pengaruh pati biji durian durian (Durio zibethinus) sebagai bahan pengisi terhadap sifat mekanik dan biodegradasi komposit matrik polipropilena (PP). Jurnal Teori dan Aplikasi Fisika, 2(2).
  • 16. Jannah N.R., Jamarun N., Putri Y.E. 2021. Production of starch-based bioplastic from durio zibethinus murr seed using glycerol as plasticizer. J. Ris. Kim., 12(2).
  • 17. Karamanlioglu M., Preziosi R., Robson G.D. 2017. Abiotic and biotic environmental degradation of the bioplasticpolymer poly(lactic acid): A review. Polym. Degrad. Stab., 137, 122–130.
  • 18. Kartika T.,.Harahap M.B., Ginting S.M.H. 2018. Utilization of mango seed starch in manufacture of bioplasti reinforced with microparticle clay using glycerol as plasticizer. IOP Conf. Ser. Mater. Sci. Eng., 309.
  • 19. Lu D.R., Xiao C.M., Xu S.J. 2009. Starchbased completely biodegradable polymer materials. Express Polym. Lett., 3(6), 366–375.
  • 20. Lubis M., Harahap M. B., Manullang, Alfarodo, Ginting M.H.S., Sartika, Sartika M. 2016. Utilization starch of jackfruit seed (Artocarpus heterophyllus) as raw material for bioplastics manufacturing using sorbitol as plasticizer and chitosan as filler. 2016. Journal of Physics: Conference Series, 801, International Conference on Computing and Applied Informatics, Medan, Indonesia 2016, 14–15.
  • 21. Marichelvam M.K., Jawaid M., Asim M. 2019. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 1–14.
  • 22. Maulana D.S., Mubarak A.S., Pujiastuti D.Y. 2021. The concentration of polyethylen glycol (PEG) 400 on bioplastic cellulose based carrageenan waste on biodegradability and mechanical properties bioplastic. OP Conf. Series: Earth and Environmental Science, 679, 012008.
  • 23. Maulida M., Siagian, Tarigan P. 2016. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer. Journal of Physics: Conference Series, 710, 012012.
  • 24. Montero B., Rico M., Rodríguez-Llamazares S., Barral L., Bouza R. 2017. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate polymers, 157, 1094–1104.
  • 25. Mostafa N.A., Farag A.A., Abo-dief H.M., Tayeb A.M. 2018. Production of biodegradable plastic from agricultural wastes. Arabian Journal of Chemistry, 11, 546–553.
  • 26. Moura I.G., de Sá, A.S., Abreu A.S.L.M, Machado A.V.V, 2017. Bioplastics from agro-wastes for food packaging applications. Academic Press, 223–263.
  • 27. Muller J., González-Martínez C., Chiralt A., Muller J., González-Martínez C., Chiralt A. 2017. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 952.
  • 28. Nathalie L., Christophe B., Christian B. 2008. Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere, 73(4), 429–442.
  • 29. Retnowati D.S., Ratnawati R, Purbasari A. 2015. A biodegradable file from jackfruit (Artocarpus heterophyllus) and durian (Duriozibethinus) seed flours. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry, 16(4), 395–404.
  • 30. Rohman M.A. 2016. Pengaruh penambahan glutaraldehida terhadap karakteristik film bioplastik kitosan terplastis carboxy methyl cellulose (CMC) skripsi. Surabaya: Universitas Airlangga, 9.
  • 31. Rozikhin, Zalfiatri Y., Hamzah F.H. 2020. Pembuatan Plastik Biodegradable Dari Pati Biji Durian dan Pati Biji Nangka. Chempublish Journal, 5(2), 151–165.
  • 32. Saiful, Helwati H., Saleha S., Iqbalsyah T.M. 2018. Development of bioplastic from wheat Janeng starch for food packaging. In: Proceedings of the 8th Annual International Conference (AIC) 2018 on Science and Engineering, Aceh, Indonesia, 12–14.
  • 33. Santana R.F., Bonomo R., Gandolfi O., Rodrigues L.B., Santos L.S., Pires D.S., Oliveira C.P., da Costa Ilhéu Fontan R., Veloso C.M. 2018. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55(1), 278–286. https://doi.org/10.1007/s13197-017-2936-6
  • 34. Santana R.F., Bonomo R.C.F., Gandolfi O.R.R. 2018. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. 2018. Journal of Food Science and Technology, 55, 278–286. https://doi.org/10.1007/s13197-017-2936-6
  • 35. Sari G.L., Kasasiah A., Utami M.R., Trihadiningrum Y. 2021. Microplastics ontamination in the aquatic environment of Indonesia: A comprehensive review. Journal of Ecological Engineering, 22(10), 127–140.
  • 36. Seggiani M., Cinelli P., Verstichel S., Puccini M., Vitolo S., Anguillesi I., Lazzeri A. 2015. Development of fibres-reinforced biodegradable composites. In: S. Pierucci and J.J. Klemes (Eds.) Proceedings of the 12th International Conference on Chemical & Process Engineering, 43, 1813–1818.
  • 37. Shafqat A., Al-Zaqri N., Tahir A., Alsalme A. 2021. Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi Journal of Biological Sciences, 28(3), 1739–1749.
  • 38. Sitompul, Zubaidah. 2017. The influence of the type and concentration of plasticizer toward physical characteristic of edible film from palm fruit (Arenga pinnata). Jurnal Pangan dan Agroindustri, 5(1), 13–25.
  • 39. Syamsu K., Hartoto L., Fauzi A.M., Suryani A., Rais D. 2007. The roles of PEG400 in the introduction of bioplastic polyhydroxy alkanoates produces by Rastonia Eutropha from hydrolysed sago starch substrate. Jurnal Ilmu Pertanian Indonesia, 12(2), 63–68.
  • 40. Wahidin M., Srimarlita A., Sulaiman I., Indarti E. 2021. Transparency and thickness of jackfruit and durian seed starch edible film. IOP Conf. Series: Earth and Environmental Science, 667, 012030.
  • 41. Wahyuningtiyas N.E., Suryanto H. 2017. Analysis of biodegradation of bioplastics made of cassava starch. Journal of Mechanical Engineering Science and Technology, 1(1).
  • 42. Wahyuningtiyas N.E., Suryanto H. 2018. Properties of cassava starch based bioplastic reinforced by nanoclay. Journal of Mechanical Engineering Science and Technology, 2(1), 20–26.
  • 43. Wilpiszewska K., Spychaj T. 2011. Ionic liquids: Media for starch dissolution, plasticization and modification. Carbohydrate Polymers, 86(2), 424–428.
  • 44. World Economic Forum. 2020. Radically reducing plastic pollution in Indonesia: A Multi stakeholder action plan. National Plastic Action Partnership, Switzerland.
  • 45. Zoungranan Y., Lynda E., Dobi-Brice K.K., Tchirioua E., Bakary C., Yannick D.D. 2020. Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. Journal of Environmental Chemical Engineering, 8(5), 104396.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f5cc343-4801-4aec-b686-49ad1eb740d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.