PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Process of As-Cast Ferritic Gray Cast Iron Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Though normal air cooling and green sand mold-casted gray iron convey an essentially pearlitic matrix, ferritic gray iron is used in some electro-mechanical applications to have better magnetic properties, ductility, and low hardness. Conventionally, to produce ferritic gray iron, foundryman initially produces pearlitic gray iron, then it is carried through a long annealing cycle process for ferritic transformation. This experiment is conducted to eliminate the long annealing cycle from the conventional process. A process is developed to produce as-cast ferritic gray cast iron by air cooling in the green sand mold. In this experiment, Si content is kept high, but Mn content is kept low based on sulfur content; a unique thermodynamic process is established for decreasing the Mn content from the melt. After a successful preconditioning and optimum foundry return charging, the melt is specially inoculated, and metal is poured into the green sand mold. An extra feeder is added for slowing down the cooling rate where casting thickness is around 15mm. Finally, hardness and metallographic images are observed for final confirmation of the ferritic matrix.
Rocznik
Strony
5--10
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Bangladesh University of Engineering and Technology Shahbagh, Dhaka, Bangladesh
Bibliografia
  • [1] Callister, W.D. Jr. (2007). Applications and processing of metal alloys. Materials Science and Engineering, An introduction. John Wiley & Sons, Inc. 367-370.
  • [2] All Sister Concern of WALTON Group (2021). Component of GVM38AA model Compressor. Retrieved June 6, 2021, from https://waltonbd.com/compressor/walpha-series134a /gvm38aa.
  • [3] Fox, M.A.O. & Adams, R.D. (1973). Correlation of the damping capacity of cast iron with its mechanical properties and microstructure. Journal of Mechanical Engineering Science. 15(2), 81-94.
  • [4] Buschow K.H.J., de Boer F.R. (2003) Soft-Magnetic Materials. Physics of Magnetism and Magnetic Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48408-0_14.
  • [5] Mozetic, H., Fonseca, E., Schneider, E. L., Kindlein Jr, W., & Schaeffer, L. (2011). The use of magnetic field annealing on nodular cast iron for speaker cores. International Journal of Applied Electromagnetics and Mechanics. 37(1), 51-65.
  • [6] Dura-Bur, Metal Service (2021). G1A gray iron. Retrieved June 8, 2021 from https://www.dura-barms.com/products/dura-bar/gray-iron/g1a.
  • [7] Wensheng, L. (1995). Production of as-cast ferritic nodular cast iron. Journal of Zhengzhou Textile Institute. 3, 50-52.
  • [8] Guzik, E., Kopyciński, D., & Wierzchowski, D. (2014). Manufacturing of ferritic low-silicon and molybdenum ductile cast iron with the innovative 2PE-9 technique. Archives of Metallurgy and Materials. 59(2), 687-691.
  • [9] Stefanescu, D.M. (1981). Production of as-cast ferritic and ferritic-pearlitic ductile iron in green sand molds. AFS International Cast Metals Journal. June 1981, 23-32.
  • [10] Fraś, E. & Górny, M. (2012). An inoculation phenomenon in cast iron. Archives of Metallurgy and Materials. 57(3), 767-777. DOI: https://doi.org/10.2478/v10172-012-0084-6.
  • [11] Riposan, I., Chisamera, M., Stan, S. & White, D. (2009). Complex (Mn, X) S compounds-major sites for graphite nucleation in grey cast iron. China Foundry. 6(4), 352-358.
  • [12] Ghosh, S. (1995), Micro-structural characteristics of cast irons. Retrieved July 10, 2019, from http://eprints.nmlindia.org/4334/1/E1-18.pdf.
  • [13] Lacaze, J. & Sertucha, J. (2016). Effect of Cu, Mn, and Sn on pearlite growth kinetics in as-cast ductile irons. International Journal of Cast Metals Research. 29(1-2), 74-78. doi.org/10.1080/13640461.2016.1142238.
  • [14] Stefanescu, D. M., Alonso, G., & Suarez, R. (2020). Recent developments in understanding nucleation and crystallization of spheroidal graphite in iron-carbon-silicon alloys. Metals. 10(2), 221. DOI.org/10.3390/met10020221.
  • [15] Ghosh, S. (1994). Heat Treatment of Cast Irons.
  • [16] Electro-Nite. Thermal analysis of cast iron. Retrieved June 8, 2021 from https://www.heraeus.com/media/media/hen/ media_hen/products_hen/iron/thermal_analysis_of_cast_iron.pdf.
  • [17] Koriyama, S., Kanno, T., Iwami, Y., & Kang, I. (2020). Investigation of the difference between carbon equivalent from carbon saturation degree and that from liquidus. International Journal of Metalcasting, 1-8.
  • [18] Sekowski, K., Piaskowski, J., Wojtowicz, Z. (1972). Atlas of the standard microstructures of foundry alloys. Warszawa: WNT, Poland.
  • [19] Mampaey, F. (1981). The manganese:sulfur ratio in gray irons. Fonderie Belge – De Belgische Gieterej. 51(1), 11-25 (March 1981).
  • [20] Gundlach, R., Meyer, M. & Winardi, L. (2015). Influence of Mn and S on the properties of cast iron, part III : testing and analysis. International Journal of Metalcasting. 9(2), 69-82.
  • [21] Behnam, M. J., Davami, P. & Varahram, N. (2010). Effect of cooling rate on microstructure and mechanical properties of gray cast iron. Materials Science and Engineering: A. 528(2), 583-588. DOI.org/10.1016/j.msea.2010.09.087.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f59c5aa-19ed-4057-b4fd-7c740b8efb8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.