PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Flexural rehabilitation of steel beam with CFRP and BFRP fabrics – A comparative study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper compares the performance of structural steel beams retrofitted with two different fiber reinforced polymer (FRP) fabrics: Carbon FRP (CFRP) and Basalt FRP (BFRP) fabrics. A total of eight steel beams with and without corrosion defect in the flexural tension zone were tested under 4-point bending load. The study found that the use of both FRP fabrics resulted in reduced ductility, however, ductility of beams retrofitted with BFRP fabric is much higher than that of the beams retrofitted with CFRP fabric of similar thickness. The study also found that both FRPs fabrics are effective in increasing the ultimate load, yield load, and elastic stiffness of beams, however, number of BFRP fabric layers required is higher than the number of CFRP fabrics. The structural behavior of steel beams including the complex behavior of rupture in the FRP fabrics were successfully modeled using a commercially finite element software and a good correlation was obtained between the finite element models and the lab specimens. Validated finite element model was used to obtain additional information that could not be obtained from the experimental study. This study concludes that the Basalt fabric offers a competitive and green alternative to the Carbon fabric.
Rocznik
Strony
871--882
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Civil and Environmental Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
  • Department of Civil and Environmental Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
  • bMEDA Limited, Windsor, ON N8S 3N4, Canada
Bibliografia
  • [1] Federal Highway Administration (FWHA), Deficient Bridges by Highway System, 2016 www.fhwa.dot.gov/bridge/nbi/ no10/defbr16.cfm (27.06.17).
  • [2] National Research Council Canada (NRC), Critical Concrete Infrastructure: Extending the Life of Canada's Bridge Network, 2013 http://www.nrc-cnrc.gc.ca/ci-ic/article/ v18n1-5.
  • [3] L. Narendran, Cost Estimation of Fiber Reinforced Polymer (FRP) Repairs on Rail and Highway Bridges, (Master of Science Thesis), West Virginia University, Morgantown, WV, USA, 2013.
  • [4] A.H. Al-Saidy, F.W. Klaiber, T.J. Wipf, Repair of steel composite beams with carbon fiber-reinforced polymer plates, Journal of Composite for Construction 8 (2004) 163– 172.
  • [5] T.D. West, Enhancement to the Bond Between Advanced Composite Materials and Steel for Bridge Rehabilitation, (Master of Science Thesis), Univ. of DE, Newark, DE, USA, 2001.
  • [6] M. Dawood, Fundamental Behavior of Steel–Concrete Composite Beams Strengthened with High Modulus Carbon Fiber Reinforced Polymer Materials, (Master of Science Thesis), NC State Univ., Raleigh, NC, USA, 2005.
  • [7] R. Jeevanantham, V.P. Venketaramanamurthy, D. Rajeswari, Mechanical and wear characterization of basalt fiber reinforced polyurethane composites, International Journal of Advances in Engineering & Technology 9 (2016) 79–83.
  • [8] I. Swentek, J. Thompson, G. Meirson, V. Ugresic, F. Henning, Comparison of Basalt, Glass, and Carbon Fiber Composites using the High Pressure Resin Transfer Molding Process. Technical Report, Western University, London, ON, 2016 1–25.
  • [9] S.C. Das, M.E.H. Nizam, Application of fibber reinforced polymer composites (FRP) in civil engineering, International Journal of Advanced Structures and Geotechnical Engineering 3 (2014) 299–309.
  • [10] J.W. Gillespie, D.R. Mertz, K. Kasai, W.M. Edberg, J.R. Demitz, I. Hodgson, Rehabilitation of steel bridge girders: large scale testing, in: Proc., American Society for Composites Eleventh Technical Conference, Atlanta, GA, (1996) 231–240.
  • [11] M.Z. Kabir, M. Eshaghian, Flexural upgrading of steel– concrete composite girders using externally bonded CFRP reinforcement, Applied Composite Materials 17 (2010) 209– 224.
  • [12] A.A. El Damatty, M. Abushagur, M.A. Youssef, Rehabilitation of composite steel bridges using GFRP plates, Applied Composite Materials 12 (2005) 309–325.
  • [13] M. Tavakkolizadeh, H. Saadatmanesh, Repair of cracked steel girder using CFRP sheet, in: A. Singh (Ed.), Proceedings of the First International Structural Engineering and Construction Conference, Honolulu, Hawaii, USA, (2001) 461–467.
  • [14] X.L. Zhao, L. Zhang, State-of-the-art review on FRP strengthened steel structures, Engineering Structures 29 (2007) 1808–1823.
  • [15] M. Bocciarelli, Response of statically determined steel beams reinforced by CFRP plates in the elastic plastic regime, Engineering Structures 31 (2009) 956–967.
  • [16] N.G. Tsouvalis, L.S. Mirisiotis, D.N. Dimou, Experimental and numerical study of the fatigue behavior of composite patch reinforced cracked steel plates, International Journal of Fatigue 31 (2009) 1613–1627.
  • [17] M. Chen, S. Das, Experimental study on repair of corroded steel beam using CFRP, Steel and Composite Structures 9 (2) (2009) 103–118.
  • [18] A. Manalo, C. Sirimanna, W. Karunasena, L. McGarva, P. Falzon, Pre-impregnated carbon fiber reinforced composite system for patch repair of steel I-beams, Construction and Building Materials 105 (2016) 365–376.
  • [19] K. Narmashiri, N.H.R. Sulong, M.Z. Jumaat, Failure analysis and structural behavior of CFRP strengthened steel I-beams, Construction and Building Materials 30 (2012) 1–9.
  • [20] A.G. Dehghani, K. Narmashiri, Local strengthening of steel beams using CFRP strips, MAGNT Research Report 2 (6) (2014) 795–802.
  • [21] O. Yousefi, K. Narmashiri, A. Ghods, Investigation of flexural deficient steel beams strengthened by CFRP, Indian Journal of Fundamental and Applied Life Sciences 4 (4) (2014) 372–380.
  • [22] A. Awaludin, D.P. Sari, Numerical and experimental study on repaired steel beam using carbon fiber reinforced polymer, in: Amin, Okui, Bhuiyan, Ueda (Eds.), IABSE-JSCE Joint Conference on Advances in Bridge Engineering-III, Dhaka, Bangladesh, (2015) 630–635.
  • [23] J. Sim, C. Park, D.Y. Moon, Characteristics of basalt fiber as a strengthening material for concrete structures, Composites: Part B 36 (2005) 504–512.
  • [24] H. Huanan, D. Wei, Study on damage reinforced concrete beams strengthened with basalt fiber polymer sheets, Advanced Materials Research 446–449 (2012) 2942–2944.
  • [25] L. Huang, Y. Li, Y. Wang, Strengthening effects of BFRP on reinforced concrete beams, Journal of Southeast University 29 (2) (2013) 182–186.
  • [26] A. Chandran, K.L. Muthuramu, Investigation on flexural behavior of RC beams using uni and multi-directional BFRP composites, Research Journal of Applied Sciences, Engineering & Technology 10 (9) (2015) 1062–1069.
  • [27] CISC (Canadian Institute of Steel Construction), Handbook of Steel Construction. Willowdale, ON, Canada, 2014.
  • [28] ASTM (American Society for Testing and Materials), Standard Test Methods for Tension Testing of Metallic Materials. E8/ E8M-15a, West Conshohocken, PA, USA, 2015.
  • [29] ASTM (American Society for Testing and Materials), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. D3039/D3039M-14, West Conshohocken, PA, USA, 2014.
  • [30] K. Galal, E.H.M. Seif, L. Trica, Flexural performance of steel girders retrofitted using CFRP materials, Journal of Composites for Construction 16 (2012) 265–276.
  • [31] K. Narmashiri, M.Z. Jumaat, N.H.R. Sulong, Failure modes of CFRP flexural strengthened steel I-beams, Key Engineering Materials 471 (2011) 590–595.
  • [32] ASTM (American Society for Testing and Materials), Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding. D5868-01, West Conshohocken, PA, USA, 2001.
  • [33] SIMULIA Analysis User's Manuals, Dassault Systèmes Simulia Corp., Rising Sun Mills, Providence, RI, USA, 2018.
  • [34] A.M. Girão Coelho, J.T. Mottram, K.A. Harries, Finite element guidelines for simulation of fiber-tension dominated failures in composite materials validated by case studies, Composite Structures 126 (2015) 299–313.
  • [35] Z. Hashin, Failure criteria for unidirectional fiber composites, Journal of Applied Mechanics 47 (2) (1980) 329–334.
  • [36] Y. Shi, T. Swait, C. Soutis, Modelling damage evolution in composite laminates subjected to low velocity impact, Composite Structures 94 (2012) 2902–2913.
  • [37] P. Maimi, P.P. Camanho, J. Mayugo, C.G. Davila, A Thermodynamically Consistent Damage Model for Advanced Composites. Tech. Rep. NASA/TM-2006-214282, 2006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f57f722-e745-4448-b0d3-0e3e1ebbabe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.