PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultaneous detection of medium scale traveling ionospheric disturbances and ionospheric plasma irregularities over Srinagar, J&K, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report some ionospheric phenomena that occurred on September 23, 2019 observed by an airglow imager installed at University of Kashmir, Srinagar, India (34.08°N, 74.79°E, and 25.91°N magnetic latitude). The various phenomena observed on this night are as follows: (1) The wave-like structures near the dusk time having phase fronts aligned along Northwest to Southeast direction and moving southwestward, classifed as nighttime medium-scale traveling ionospheric disturbance. (2) Simultaneous observation of northwestward-moving nighttime medium-scale traveling ionospheric disturbances and eastward-drifting plasma irregularity and (3) The westward reversal of feld-aligned plasma irregularity and K-shaped depletion structure formation post-midnight. We analyze their characteristics and evolution processes in detail. The plasma irregularity seems to be the signature of locally generated plasma irregularities at low-mid-latitude transition region as the radar observations from a geomagnetic low-latitude station (Gadanki, India; 13.5°N, 79.2°E, Magnetic latitude~6.5°N) do not show any signatures of equatorial plasma bubbles during this night. It is interesting to note that the westward reversal of plasma irregularity occurred even when the geomagnetic conditions were at quiet levels (Kp~0 to 1+). Though the observed nighttime MSTIDs and plasma irregularity bands are two diferent events, yet the structures appear to interact with each other, the apparent mechanism leading to the quiet time westward reversal of plasma irregularity structures at midnight and the development of complex K-shaped depletion structure. Interaction between these phenomena and their observed characteristic features is also discussed.
Czasopismo
Rocznik
Strony
931--945
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Department of Physics, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
  • Department of Physics, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
  • National Atmospheric Research Laboratory, Department of Space, Government of India, Gadanki, Tirupati, Andhra Pradesh 517112, India
  • National Atmospheric Research Laboratory, Department of Space, Government of India, Gadanki, Tirupati, Andhra Pradesh 517112, India
  • Department of Physics, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
Bibliografia
  • 1. Aarons J (1993) The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci Rev 63:209–243
  • 2. Abdu MA, Batista IS, Takahashi H, MacDougall J, Sobral JH, Medeiros AF, Trivedi NB (2003) Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: a case study in Brazilian sector. J Geophys Res 108(A12):1449. https://doi.org/10.1029/2002JA009721
  • 3. Basu S, Basu S, MacKenzie E, Bridgwood C, Valladares CE, Groves KM, Carrano C (2010) Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Sci. 45:RS5009. https://doi.org/10.1029/2009RS004343
  • 4. Cosgrove RB, Tsunoda RT, Fukao S, Yamamoto M (2004) Coupling of the Perkins instability and the sporadic e layer instability derived from physical arguments. J Geophys Res 109:A06301. https://doi.org/10.1029/2003JA010295
  • 5. Fukushima D, Shiokawa K, Otsuka Y, Ogawa T (2012) Observation of equatorial nighttime medium scale traveling ionospheric disturbances in 630 nm airglow images over 7 years. J Geophys Res 117:A10324. https://doi.org/10.1029/2012JA017758
  • 6. Garcia FJ, Taylor MJ, Kelly MC (1997) Two-dimensional spectral analysis of mesospheric airglow image data. Appl Opt 36:7374–7385
  • 7. Garcia FJ, Kelley MC, Makela JJ, Huang CS (2000) Airglow observations of mesoscale low velocity traveling ionospheric disturbances at midlatitudes. J Geophys Res 105:18407–18415. https://doi.org/10.1029/1999JA000305
  • 8. Huang CS, John CF, Yogeshwar S (2007) Significant depletions of the ionospheric plasma density at middle latitudes: a possible signature of equatorial spread F bubbles near the plasmapause. J Geophys Res 112:A05315. https://doi.org/10.1029/2007JA012307
  • 9. Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys Space Phys 20:293–315
  • 10. Kelley MC (2011) On the origin of mesoscale TIDs at midlatitudes. Ann Geophys 29(2):361–366. https://doi.org/10.5194/angeo
  • 11. Kotake N, Otsuka Y, Ogawa T, Tsugawa T, Saito A (2007) Statistical study of medium scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space 59(2):95–102. https://doi.org/10.1007/9789400703261_21
  • 12. Kubota M, Fukunishi H, Okano S (2001) Characteristics of medium- and large- scale TID overJapan derived from OI 630 nm nightglow observation. Earth Planets Space 53:741751
  • 13. Kubota M, Conde M, Ishii M, Murayama Y, Jin H (2011) Characteristics of nighttime medium-scale travelling ionospheric disturbances observed over Alaska. J Geophys Res 116:A05307. https://doi.org/10.1029/2010JA016212
  • 14. Makela JJ (2006) A review of imaging low-latitude ionospheric irregularity processes. J Atmos Solar Terr Phys 68:1441–1458
  • 15. Martinis C, Baumgardner J, Wroten J, Mendillo M (2010) Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo. Geophys Res Lett 37:L11103. https://doi.org/10.1029/2010GL043569
  • 16. Narayanan VL, Gurubaran S, Emperumal K (2009) Imaging observations of upper mesospheric nightglow emissions from Tirunelveli (8.7°N). Indian J Radio Space Phys 38:150–158
  • 17. Narayanan VL, Shiokawa K, Otsuka Y, Saito S (2014) Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: statistical characteristics and low-latitude limit. J Geophys Res Space Phys 119:9268–9282. https://doi.org/10.1002/2014JA020368
  • 18. Narayanan VL, Gurubaran S, Berlin Shiny MB, Emperumal K, Patil PT (2017) Some new insights of the characteristics of equatorial plasma bubbles obtained from Indian region. J Atmos Solar Terr Phys. https://doi.org/10.1016/j.jastp.2017.03.006
  • 19. Otsuka Y, Shiokawa K, Ogawa T (2012) Disappearance of equatorial plasma bubble after interaction with mid-latitude medium-scale traveling ionospheric disturbance. Geophys Res Lett 39:L14105. https://doi.org/10.1029/2012GL052286
  • 20. Otsuka Y, Shiokawa K, Nishioka M, Effendy (2012a) VHF radar observations of post-midnight F-region field-aligned irregularities over Indonesia during solar minimum. Indian J Radio Space Phys 41:199–207
  • 21. Park J, Lühr H, Lee C, Kim YH, Jee G, Kim JH (2014) A climatology of medium scale gravity wave activity in the midlatitude/low latitude daytime upper thermosphere as observed by CHAMP. J Geophys Res Space Physics 119:2187–2196. https://doi.org/10.1002/2013JA019705
  • 22. Patra AK, Srinivasulu P, Chaitanya PP, Rao MD, Jayaraman A (2014) First results on low latitude E and F region irregularities obtained using the Gadanki Ionospheric radar interferometer. J Geophys Res Space Physics 119:10276–10293. https://doi.org/10.1002/2014JA020604
  • 23. Paulino AF, Medeiros B, Buriti RA, Sobral JHA, Takahashi H, Gobbi D (2010) Optical observations of plasma bubble westward drifts over Brazilian tropical region. J Atmos Solar-Terr Phys 72:521–527. https://doi.org/10.1016/j.jastp.2010.01.015
  • 24. Paulino I, Medeiros AF, Vadas SL, Wrasse CM, Takahashi H, Buriti RA et al (2016) Periodic waves in the lower thermosphere observed by OI 630 nm airglow images. Ann Geophys 34(2):293–301. https://doi.org/10.5194/angeo342932016
  • 25. Sahai Y, Fagundes PR, Bittencourt JA (2000) Transequatorial F-region ionospheric plasma bubbles: solar cycle effects. J Atmos Solar Terr Phys 62:13771383
  • 26. Sau S, Narayanan VL, Gurubaran S, Ghodpage RN, Patil PT (2017) First observation of interhemispheric asymmetry in the EPBs during the St. Patrick’s Day geomagnetic storm of 2015. J Geophys Res Space Phys 122:6679–6688. https://doi.org/10.1002/2017JA024213
  • 27. Sharma AK, Nade DP, Nikte SS, Ghodpage RN, Patil PT, Rokade MV, Vhatkar RS, Gurubaran S (2014) Development of fast image analysis technique for All-Sky images. Curr Sci 106(8):25
  • 28. Shiokawa K, Ihara C, Otsuka Y, Ogawa T (2003) Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J Geophys Res 108(A1):1052. https://doi.org/10.1029/2002JA009491
  • 29. Shiokawa V, Otsuka Y, Ogawa T, Wilkinson P (2004) Time evolution of high-altitude plasma bubbles imaged at geomagnetic conjugate points. Ann Geophys 22:3137–3143
  • 30. Sivakandan M, Chakrabarty D, Ramkumar TK, Guharay A, Taori A, Parihar N (2019) Evidence for deep ingression of the midlatitude MSTID into as low as ~3.5° magnetic latitude. J Geophys Res Space Phys 124:749–764. https://doi.org/10.1029/2018JA026103
  • 31. Taori A, Parihar N, Ghodpage R, Dashora N, Sripathi S, Kherani EA, Patil PT (2015) Probing the possible trigger mechanisms of an equatorial plasma bubble event based on multistation optical data. J Geophys Res Space Phys 120:8835–8847. https://doi.org/10.1002/2015JA021541
  • 32. Tsugawa T, Otsuka Y, Coster AJ, Saito A (2007) Medium scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophys Res Lett 34:L22101. https://doi.org/10.1029/2007GL031663
  • 33. Vadas SL (2007) Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305. https://doi.org/10.1029/2006JA011845
  • 34. Zhou Q, Mathews JD (2006) On the physical explanation of the Perkins instability. J Geophys Res. https://doi.org/10.1029/2006JA011696
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f4cb4f1-0294-4ec7-bd23-91860769f78c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.