PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Investigation of TNT Equivalence of Hemispherical PE4 Charges

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The TNT equivalence of an explosive is given as the equivalent mass of TNT required to produce a blast wave of equal magnitude to that produced by a unit weight of the explosive in question. Currently, there is a lack of agreement in the literature on the TNT equivalence (TNTeq) of PE4. This paper presents a combined numerical and experimental investigation of TNTeq for hemispherical PE4 charges in far-field blast events. Experimental results are compared to a series of numerical analyses conducted with different masses of TNT explosive and conclusions are drawn in order to provide a more informed value of TNTeq. It is found that a TNTeq of 1.2 best describes the blast waves produced from PE4 detonations, and this factor is found to be invariant of the distance from the explosive when considering far-field events.
Rocznik
Strony
423–--435
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil & Structural Engineering University of Sheffield Mappin Street, Sheffield, S1 3JD, UK
autor
  • Poznan University of Technology Institute of Structural Engineering Piotrowo 5, 60-965 Poznań, Poland
Bibliografia
  • 1. Hyde D.W., Conventional Weapons Program (ConWep), U.S Army Waterways Experimental Station, Vicksburg, MS, USA, 1991.
  • 2. US Department of Defence, Structures to resist the effects of accidental explosions, US DoD, Washington DC, USA, UFC-3-340-02, 2008.
  • 3. Kingery C.N., Bulmash G., Airblast parameters from TNT spherical air burst and hemispherical surface burst, Technical Report ARBRL-TR-02555, U.S Army BRL, Aberdeen Proving Ground, MD, USA, 1984.
  • 4. Formby S.A., Wharton R.K., Blast characteristics and TNT equivalence values for some commercial explosives detonated at ground level, Journal of Hazardous Materials, 50, 2–3, 183–198, 1996.
  • 5. Sochet I., Gardebas D., Calderara S., Marchal Y., Longuet B., Blast wave parameters for spherical explosives detonation in free air, Open Journal of Safety Science and Technology, 10, 31–42, 2011.
  • 6. Cooper P.W., Comments on TNT Equivalence, [in:] 20th International Pyrotechnics Seminar, pages 1–26, Colorado Springs, CO, USA, 1994.
  • 7. Swisdak M.M., Explosion effects and properties. Part I – explosion effects in air, Technical Report NSWC/WOL/TR 75-116, Naval Surface Weapons Center, MD, USA, 1975.
  • 8. Locking P.M., The trouble with TNT equivalence, [in:] 26th International Symposium on Ballistics, Miami, FL, USA, 2011.
  • 9. Ackland K., Bornstein H., Lamos D., An analysis of TNT equivalencies using AUTODYN, Journal of Explosion Engineering, 1, 3, 71, 2012.
  • 10. Pachman J., Matya´ˇs R., Kunzel M. ¨ , Study of TATP: blast characteristics and TNT equivalency of small charges, Shock Waves, 24, 4, 439–445, 2014.
  • 11. ABAQUS, v.6.13, Documentation Collection, 2012.
  • 12. LS-DYNA, Theory Manual, Livermore Software Technology Corporation, CA, USA, 2006.
  • 13. Rigby S.E., Tyas A., Bennett T., Clarke S.D., Fay S.D., The negative phase of the blast load, International Journal of Protective Structures, 5, 1, 1–20, 2014.
  • 14. Rigby S.E., Tyas A., Fay S.D., Clarke S.D., Warren J.A., Validation of semiempirical blast pressure predictions for far field explosions – is there inherent variability in blast wave parameters?, [in:] 6th International Conference on Protection of Structures against Hazards, Tianjin, China, 2014.
  • 15. Baker W.E., Explosions in air, University of Texas Press, Austin, TX, USA, 1973.
  • 16. Brode H.L., Numerical solutions of spherical blast waves, Journal of Applied Physics, 26, 6, 766–775, 1955.
  • 17. Lee E.L., Hornig H.C., Kury J.W., Adiabatic expansion of high explosive detonation products, Technical Report TID 4500-UCRL 50422, Lawrence Radiation Laboratory, University of California, CA, USA, 1968.
  • 18. Dobratz B.M., Crawford P.C., LLNL explosives handbook – properties of chemical explosives and explosive simulants, Technical Report UCRL 52997, Lawrence Livermore National Laboratory, University of California, CA, USA, 1985.
  • 19. Sielicki P.W., Masonry Failure under Unusual Impulse Loading, Publishing House of Poznan University of Technology, Poznan, 2013, ISBN 978-83-7775-274-6.
  • 20. Tyas A., Warren J., Bennett T., Fay S., Prediction of clearing effects in far-field blast loading of finite targets, Shock Waves, 21, 2, 111–119, 2011.
  • 21. Tyas A., Bennett T., Warren J.A., Fay S.D., Rigby S.E., Clearing of blast waves on finite-sized targets – an overlooked approach, Applied Mechanics and Materials, 82, 669–674, 2011.
  • 22. Rigby S.E., Blast Wave Clearing Effects on Finite-Sized Targets Subjected to Explosive Loads, PhD Thesis, University of Sheffield, UK, 2014.
  • 23. Rigby S.E., Tyas A., Clarke S.D., Fay S.D., Warren J.A., Elgy I., Gant M., Testing apparatus for the spatial and temporal pressure measurements from near-field free air explosions, [in:] 6th International Conference on Protection of Structures against Hazards, Tianjin, China, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f49fa01-6e99-49f6-8051-61b86e0fcc1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.