PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bond behavior of corroded reinforcements in concrete: an experimental study and hysteresis model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to study the effect of both longitudinal reinforcement and stirrups corrosion on the bond performances at steel-concrete interface under reversed cyclic loading, in this paper, the eccentric pull-out tests under reversed cyclic loading were carried out on reinforced concrete (RC) specimens with five corrosion degrees, three concrete cover thicknesses, and three stirrup spacings. The influence of the corrosion rate of longitudinal reinforcement, corrosion rate of stirrups, cover thickness, and stirrup spacing on bond performance indicators was examined, including the initial bond stiffness, peak bond stress, slip at peak bond stress, bond strength at unloading, unloading stiffness, frictional bond resistance, and cumulative energy dissipation. Moreover, the effects of coupling corrosion on cover cracking morphology and bond degradation mechanism were also analyzed. Results indicated that after severe corrosion of longitudinal reinforcement and stirrups, the cover appears cracking or local spalling, and the bond performances are signifcantly reduced. It was also showed that thickening cover or densifying stirrups could improve the interface bond performance and energy dissipation capacity. Each hysteresis parameter degrades apparently under the controlling slip corresponding to the peak bond stress. Subsequently, based on the analysis results and previous studies, empirical local bond stress-slip hysteresis models for corroded longitudinal reinforcement and corroded stirrup under reversed cyclic loading were proposed. Good consistency was observed for the hysteresis model with existing experimental data.
Rocznik
Strony
ar. no. e95, 2023
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi’an 710055, China
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi’an 710055, China
autor
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi’an 710055, China
autor
  • College of Civil Engineering and Architecture, Hebei University, Baoding 071002, China
Bibliografia
  • 1. Fillippou FC, Popov EP, Bertero VV. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. EERC University of California Berkeley, 1983; Report No. NSF/CEE-83032.
  • 2. Sezen H, Moehle JP. Seismic tests of concrete columns with light transverse reinforcement. ACI Strut J. 2006;103(6):842-9.
  • 3. Ciampi V, Eligehausen R, Bertero VV, et al. Analytical model for deformed bar bond under generalized excitations. Proceedings of the IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft. 1981. p. 53-67.
  • 4. Hanjari KZ, Coronelli D, Lundgren K. Bond capacity of severely corroded bars with corroded stirrups. Magn Concr Res. 2011;63(2):953-68.
  • 5. Lin HW, Zhao Y, Yang J, et al. Effects of the corrosion of main bar and stirrups on the bond behavior of reinforcing steel bar. Constr Build Mater. 2019;225:13-28.
  • 6. Lin HW, Zhao Y. Effects of confinements on the bond strength between concrete and corroded steel bars. Constr Build Mater. 2016;118:127-38.
  • 7. Zhou YW, Zheng B, Zhao D, et al. Cyclic bond behaviors between corroded steel bar and concrete under the coupling effects of hoop FRP confinement and sustained loading. Compos Struct. 2019;224: 110991.
  • 8. Abdulhameed AA, Al-Zuhairi AH, Al Zaidee SR, et al. The behavior of hybrid fiber-reinforced concrete elements: a new stress-strain model using an evolutionary approach. Appl Sci. 2022;12(4):2245.
  • 9. Abdulhameed AA, Hanoon AN, Abdulhameed HA, et al. Push-out test of steel-concrete-steel composite sections with various core materials: behavioural study. Arch Civil Mech Eng. 2021;21(1):1-21.
  • 10. Alavi-Fard M, Marzouk H. Bond behavior of high strength concrete under reversed pull-out cyclic loading. Can J Civil Eng. 2002;29(2):191-200.
  • 11. Li J, Gao X, Zhang P. Experimental investigation on the bond of reinforcing bars in high performance concrete under cyclic loading. Mater Struct. 2007;40(10):1027-44.
  • 12. Fang CQ, Lundgren K, Chen LG, et  al. Corrosion influence on bond in reinforced concrete. Cem Concr Res. 2004;34(11):2159-67.
  • 13. Kivell ARL. Effects of bond deterioration due to corrosion on seismic performance of reinforced concrete structures (Master thesis). University of Canterbury, New Zealand, 2012.
  • 14. Dai XD, Wang XH, Kou XJ. Bond behavior of corroded reinforcement in concrete wrapped with carbon fiber reinforced polymer under cyclic loading. J Shanghai Jiaotong Univ (Science). 2013;18(3):271-7.
  • 15. Zhou HJ, Lu JL, Xv X, et al. Effects of stirrup corrosion on bondslip performance of reinforcing steel in concrete: an experimental study. Constr Build Mater. 2015;93:257-66.
  • 16. Tassios TP. Properties of Bond between Concrete and Steel under Load Cycles Idealizing Seismic Actions. Comite Éuro-International Du Béton, Bulletin No. 131, Paris, 1979.
  • 17. Hawkins NM, Lin IJ, Jean FJ. Local bond strength of concrete for cycle reversed loadings bond in concrete. 1982. p.151-161.
  • 18. Eligehausen R, Popov EP, Bertero VV. Local bond stress-slip relationships of deformed bars under generalized excitations. EERC University of California Berkeley. 1983. Report No. NSF/ CEE-83036.
  • 19. Kivell A, Palermo A, Scott A. Complete model of corrosion-degraded cyclic bond performance in reinforced concrete. J Struct Eng. 2014;141(9):04014222.
  • 20. Lin HW, Zhao Y, Ozbolt J, et al. Analytical model for the bond stress-slip relationship of deformed bars in normal strength concrete. Constr Build Mater. 2019;198:570-86.
  • 21. MOHURD of the People’s Republic of China, Standard for Test Method of Performance on Ordinary Fresh Concrete (GB/T 50080-2002), China Architecture & Building Press, Beijing, China.
  • 22. Gan WZ, Jin WL, Gao MZ. Applicability study on accelerated corrosion methods of steel bars in concrete structures. J Build Struct. 2011;32(2):41-7.
  • 23. Jin WL, Xia J, Wang HL. Accelerated test method for simulating non-uniform corrosion of reinforcement in concrete with built-in electrode. CN Patent 101762453 A, filed January 15, 2010, and issued June 30, 2010.
  • 24. Zheng Y, Zheng SS, Yang L, et al. Experimental study and analytical model of the bond behavior of corroded reinforcing steel bars in concrete. Constr Build Mater. 2022;327: 126991.
  • 25. ASTM Standard G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, Annual Book of ASTM Standards. 2003. p.17-25.
  • 26. Djerbi A, Bonnet S, Khelidj A, et  al. Influence of traversing crack on chloride diffusion into concrete. Cem Concr Res. 2008;38(6):877-83.
  • 27. Higgins C, Iii W. Tests of reinforced concrete beams with corrosion-damaged stirrups. ACI Struct J. 2006;103(1):133-41.
  • 28. Tepfers R. Cracking of concrete cover along anchored deformed reinforcing bars. Mag Concr Res. 1979;31(106):3-12.
  • 29. Xu SH, Li A, Wang H. Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading. Constr Build Mater. 2017;148:344-58.
  • 30. Zhou HJ, Liang X, Zhang X, et al. Variation and degradation of steel and concrete bond performance with corroded stirrups. Constr Build Mater. 2017;138:56-68.
  • 31. Lin HW, Zhao Y, Ožbolt J, Hans-Wolf R. The bond behavior between concrete and corroded steel bars under repeated loading. Eng Struct. 2017;140:390-405.
  • 32. Almusallam A, Al-Gahtani A, Aziz A, et al. Effect of reinforcement corrosion on bond strength. Constr Build Mater. 1996;10(2):23-129.
  • 33. Harajli MH. Bond stress-slip model for steel bars in unconfined or steel, FRC, or FRP confined concrete under cyclic loading. J Struct Eng. 2009;135(5):509-18.
  • 34. Kim J, Ryu J, Chung L. Seismic performance of structures connected by viscoelastic dampers. Eng Struct. 2006;28(2):183-95.
  • 35. Al-Sulaimani GJ, Kaleemullah M, Basunbul IA, et al. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members. ACI Struct J. 1990;87:220-31.
  • 36. Kearsley EP, Joyce A. Effect of corrosion products on bond strength and flexural behavior of reinforced concrete slabs. J South Afr Inst Civil Eng. 2014;56(2):21-9.
  • 37. Coronelli D, Hanjari KZ, Lundgren K. Severely corroded RC with cover cracking. J Struct Eng. 2012;139(2):221-32.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f38b9fb-1876-466c-a909-98a26c025e65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.