PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vertebroplasty and kyphoplasty - advantages and disadvantages used bone cement of PMMA

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper is a review of literature where the analyses of the commonly used bone cements were carried out especially: methods of manufacturing, surgical techniques, mechanical properties, biocompatibility studies as well as possibility of improvement some properties by using additives. Design/methodology/approach: The aim of this publication is the analysis of the state of knowledge and treatment methods on compression fractures, approximation of the specifics of compression fractures, presentation of minimally invasive percutaneous surgical techniques, description of features of the most common used bone cement on matrix Poly(methyl methacrylate) – (PMMA) and presentation cement parameters which affect potential postoperative complications. Findings: In considering to review of actual state of knowledge there is a need to find the additives which allow: to reduce the polymerization temperature, improve the biocompatibility as well as mechanical properties. During the studies it was found that the additive which can meet the requirements is glassy carbon in form of powder. Practical implications: Discussion allows to prepare samples during practical work with new kind additives in composite with bone cement as matrix. Originality/value: The original in this discussion is the possibility to improve fundamental properties of the selected bone cements by using different than commonly used additives.
Rocznik
Strony
36--49
Opis fizyczny
Bibliogr. 97 poz., rys.
Twórcy
autor
  • Department of Polymer Processing, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-201 Częstochowa, Poland
Bibliografia
  • [1] M. Zawadzki, J. Walecki, K. Kordecki, I. Nasser, Interventional radiology: vertebroplasty and kyphoplasty, Acta Bio-Optica et Informatica Medica 15/1 (2009) 70-72 (in Polish).
  • [2] Website: https://polki.pl/zdrowie/choroby,jak-uniknac -osteoporozy,10402497, Access in: 14.12.2018.
  • [3] E. Czerwiński, B. Frańczuk, P. Borowy, Problems of osteoporotic fractures, Medicine after Dyplom 13 (2004) 42-49 (in Polish).
  • [4] E. Czerwiński, P. Działak, Evaluation of osteoporosis and fracture risk, Orthopedics, Traumatology, Rehabilitation 2 (2002) 127-134 (in Polish).
  • [5] J.A. Kanis, 0. Johnellm, A. Oden, A. Dawson, C. De Laet, B. Jonsson, Ten year probabilites of osteoporotic fractures according to BMD and diagnostic thresholds, Osteoporosis International 12 (2001) 989-995.
  • [6] N.B. Watts, S.T. Harris, H.K. Genant, Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty, Osteoporosis International 12 (2001) 429-437.
  • [7] A.A. Ismail, T.W. O'Neill, C. Cooper, J.D. Finn, A.K. Bhalla, J.B. Cannata P. Delmas, J.A. Falch, B. Felsch, K. Hoszowski, O. Johnell, J.B. Diaz-Lopez, A. Lopez Vaz, F. Marchand, H. Raspe, D.M. Reid, C. Todd, K. Weber, A. Woolf, J. Reeve, A.J. Silman, Mortality associated with vertebral deformity in men and women: results from European Prospective study (EPOS), Osteoporosis International 8 (1998) 291-297.
  • [8] P.J. Meunier, Osteoporosis: diagnosis and management, Martin Duniz, 1998.
  • [9] Z. Kotwica, A. Saracen, Vertebroplasty, West Pomeranian Specialist Hospital „MEDICAM", Gryfice, 2009, 31-59 (in Polish).
  • [10] N. Przybyłko, D. Kocur, R. Sordyl, W. Ślusarczyk, A. Antonowicz-Olewicz, W. Kukier, M. Wojtacha, K. Suszyński, S. Kwiek, Vertebroplasty in vertebral compression fractures - literature review, Academiae Medicae Silesiensis, 68/5 (2014) 375-379 (in Polish).
  • [11] N. McArthur, C. Kasperk, M. Baier, M. Tanner, B. Gritzbach, 0. Schoierer, W. Rothfischer, G. Krohmer, J. Hillmeier, H.-J. Kock, P.-J. Meeder, F.X. Huber, 1150 kyphoplasties over 7 years: Indications, techniques, and intraoperative complications. Orthopedics 32 (2009) 90.
  • [12] S. Masala, R. Mastrangeli, M.C. Petrella, F. Massari, A. Ursone, G. Simonetti, Percutaneous vertebroplasty in 1,253 levels: Results and long-term effectiveness in a single centre, European Radiology 19 (2009) 165-171.
  • [13] M. Weisskopf, M. Weikopf, J.A. Ohnsorge, F.U. Niethard, Intravertebral pressure during vertebroplasty and balloon kyphoplasty: An in vitro study, Spine 33 (2008) 178-82.
  • [14] P.-L. Lai, L.-H. Chen, W.-J. Chen, I-M. Chu, Chemical and Physical Properties of Bone Cement for Vertebroplasty, Biomedical Journal 36 (2013) 162-167.
  • [15] Website: http://allspine.com/eng/treatment/treatment 01_09.html, Access in: 09.04.2019.
  • [16] I.H. Lieberman, D. Togawa, M.M. Kayanja, Vertebroplasty and kyphoplasty: Filler materials, Spine Journal 5/6 (2005) 305-16S.
  • [17] Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang, B. Li, Bone Cements for percutaneus vertebroplasty and balloon kyphoplasty: Current status and future developments, Journal of Orthopedic Translation 3 (2015) 1-11.
  • [18] A. Balin, Cements in bone surgery, Publisher of the Silesian University of Technology, Gliwice, 2016 (in Polish).
  • [19] I. Koh, A. López, A.B. Pinar, B. Helgason, S.J. Ferguson, The effect of water on the mechanical properties of soluble and insoluble ceramic cements, Journal of the Mechanical Behavior of Biomedical Materials 51 (2015) 50-60.
  • [20] J. Slane, J. Vivanco, J. Meyer, L.H. Ploeg, M. Squire, Modification of acrylic bone cement with mesoporous silica nanoparticles; Effect on mechanical, fatigue and absorption properties, Journal of the Mechanical Behavior of Biomedical Materials 29 (2014) 451-461.
  • [21] M. Wekwejt, B. Świeczko-Żurek, The bioactivity of modified bone cement: literature review, Engineer and Medical Physicist 6/4 (2017) 261-268 (in Polish).
  • [22] A. Kozłowska, Research on the polymerization conditions of acrylic mass as implants, Polymers in Medicine 7/3 (1997) 137-177 (in Polish).
  • [23] Website: https://www.osartis.de/media/bonosinject_e_0718_osartis_final_l.pdf, Access in: 09.04.2019.
  • [24] A. Balin, Material-conditioned adaptation and durability of cements used in bone surgery, Science Notebooks of Silesian University of Technology: Metallurgy 1610/69 (2004) (in Polish).
  • [25] J. Marciniak, Biomaterials, Publisher of the Silesian University of Technology, Gliwice, 2013 (in Polish).
  • [26] E.P. Lautenschlager, J.J. Jacobs, G.W. Marshall, P.R. Meyer Jr., Mechanical properties of bone cements containing large doses of antibiotic powders, Journal of Biomedical Materials Research 10 (1976) 929-938.
  • [27] E.P. Lautenschlager, G.W. Marshall, K.E. Marks, J. Schwartz, C.L. Nelson, Mechanical strength of acrylic bone cements impregnated with antibiotics, Journal of Biomedical Materials Research 10 (1976) 837-845.
  • [28] K.D. Kuehn, W. Ege, U. Gopp, Acrylic bone cements: Composition and properties, Orthopedic Clinics of North America 36 (2005) 17-28.
  • [29] D.J. Theodorou, S.J. Theodorou, T.D. Duncan, S.R. Garfin, W.H. Wong, Percutaneous balloon kyphoplasty for the correction of spinal deformity in painful vertebral body compression fractures, Clinical Imaging 26 (2002) 1-5.
  • [30] Y.J. Chen, T.S. Tan, W.H. Chen, C.C. Chen, T.S. Lee, Intradural cement leakage: a devastatingly rare complication of vertebroplasty, Spine 31 (2006) 379- 382.
  • [31] D.H. Choe, E.M. Marom, K. Ahrar, M.T. Truong, J.E. Madewell, Pulmonary embolism of polymethyl methacrylate during percutaneous vertebroplasty and kyphoplasty, American Journal of Roentgenology 183 (2004) 1097-1102.
  • [32] K.Y. Yoo, S.W. Jeong, W. Yoon, J. Lee, Acute respiratory distress syndrome associated with pulmonary cement embolism following percutaneous vertebroplasty with polymethylmethacrylate, Spine 29 (2004) 294-297.
  • [33] K. Francois, Y. Taeymans, B. Poffyn, G. Van Nooten, Successful management of a large pulmonary cement embolus after percutaneous vertebroplasty: a case report, Spine 28 (2003) 424-425.
  • [34] J.S. Jang, S.H. Lee, S.K. Jung, Pulmonary embolism of polymethylmethacrylate after percutaneous vertebroplasty: a report of three cases, Spine 27 (2002) 416-418.
  • [35] B. Padovani, 0. Kasriel, P Brunner, P. Peretti-Viton, Pulmonary embolism caused by acrylic cement: a rare complication of percutaneous vertebroplasty, American Journal of Neuroradiology 20 (1999) 375-377.
  • [36] M. Freitag, A. Gottschalk, M. Schuster, W. Wenk, L. Wiesner, T.G. Stand!, Pulmonary embolism caused by polymethylmethacrylate during percutaneous vertebroplasty in orthopaedic surgery, Acta Anaesthesiologica Scandinavica 50 (2006) 248-251.
  • [37] J.N. MacTaggart, I.I. Pipinos, J.M. Johanning, T.G. Lynch, Acrylic cement pulmonary embolus masquerading as an embolized central venous catheter fragment, Journal of Vascular Surgery 43 (2006) 180-183.
  • [38] G. Baroud, M. Crookshank, M. Bohner, High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage, Spine 31 (2006) 2562-2568.
  • [39] P. Shridhar, Y.F. Chen, R. Khalil, A. Plakseychuk, S.K. Cho, B. Tillman, P.N. Kumt, Y.J. Chun, A review of PMMA bone cement and intra-cardiac embolism, Materials 9 (2016) 821.
  • [40] K.D. Harrington, Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate. A case report, Journal of Bone and Joint Surgery 83 (2001) 1070-1073.
  • [41] C. Cyteval, M.P. Sarrabere, J.O. Roux, E. Thomas, C. Jorgensen, F. Blotman, J. Sany, P. Taourel, Acute osteoporotic vertebral collapse: open study on percutaneous injection of acrylic surgical cement in 20 patients, American Journal of Roentgenology 173/6 (1999) 1685-1690.
  • [42] M. Wenger, T.M. Markwalder, Surgically controlled, transpedicular methyl methacrylate vertebroplasty with fluoroscopic guidance, Acta Neurochirurgica (Wien) 141 (1999) 625-631.
  • [43] J.S. Jang, S.H. Lee, S.K. Jung, Pulmonary embolism of polymethylmethacrylate after percutaneous vertebroplasty: a report of three cases, Spine 27/19 (2002) 416-418.
  • [44] G. Baroud, R. Falk, M. Crookshank, S. Sponagel, T. Steffen, Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration, Journal of Biomechanics 37 (2004) 189-196.
  • [45] B. Meng, M. Qian, S.X. Xia, H.L. Yang, Z.P. Luo, Biomechanical characteristics of cement/gelatin mixture for prevention of cement leakage in vertebral augmentation, European Spine Journal 22 (2013) 2249-2255.
  • [46] S. Aghyarian, L.C. Rodriguez, J. Chari, E. Bentley, V. Kosmopoulos, I.H. Lieberman, D.0 Rodrigues, Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation, Journal of Biomaterials Application 29 (2014) 688-698
  • [47] P.F. Heini, B. Walchli, U. Berlemann, Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures, European Spine Journal 9 (2000) 445-450.
  • [48] J. Osieleniec, E. Czerwiński, S. Zemankiewicz, Vertebroplasty and kyphoplasty in the treatment of osteoporotic vertebral fractures: expectations and fears, Advances in Osteoarthrology 14/2 (2003) 1-8 (in Polish).
  • [49] T. Wądek, A. Nobis, M. Paściak, Complications of percutaneous vertebroplasty, Journal of Spine Surgery 1/21 (2011) 59-64 (in Polish).
  • [50] K.A. Maim, D.L. Bartel, T.M. Wright, A.H. Burstein, Coulomb frictional interfaces in modeling cemented total hip replecement: a more realistic model, Journal of Biomechanics 28 (1995) 1067-1078.
  • [51] R. Mala, A.S. Ruby Celsia, Bioceramics in orthopaedics: A review, in: S. Thomas, P. Balakrishnan, M.S. Sreekala (Eds.), Fundamental Biomaterials: Ceramics, Woodhead Publishing, 2018, 195-221.
  • [52] A. Balin, M. Sozańska, J. Toborek, Z. Gajda, Application of scanning microscopy and X-ray microanalysis for description of the admixture surgical cements fracture, Journal of Medical Informatics & Technologies 2/2 (2001) 75-83.
  • [53] A. Balin, J. Myalski, G. Pucka, J. Toborek, Influence of admixtures of ceramic material on the physicochemical properties of surgical cement, Polimers 51/11-12 (2006) 852-858 (in Polish).
  • [54] J. Okrajni, A. Balin, Estimation of the ceramic admixture influence on the polymerization temperature of surgical cement, Proceedings of the VII International Conference „Medical Informatics and Technologies", Journal of Medical Informatics and Technologies 6 (2003) 127-135.
  • [55] K.E. Oczoś, Shaping ceramic technical materials, Rzeszow University of Technology Publishing House, Rzeszow, 1996 (in Polish).
  • [56] A. Balin, Mechanisms of cracking and durability of new biomaterials used as fillers in bone hip surgery, Report on the research project KBN No. 7 TO8E 029 16, 1999-2000 (in Polish).
  • [57] A. Balin, J. Toborek, J. Myalski, Physical properties of surgical cement modified with ceramic, Acta Bioengineering and Biomechanics 1/1 (1999) 51-54 (in Polish).
  • [58] A. Sudo , M. Hasegawa, A. Fukuda, A.J. Uchida, Treatment of Infected Hip Arthroplasty With Antibiotic-Impregnated Calcium Hydroxyapatite, The Journal of Arthroplasty 23/1 (2008) 145-150.
  • [59] E. Fitzer, From polymers to polymeric carbon — a way to synthesize a large variety of new materials, Pure and Applied Chemistry 52/7 (1980) 1865-1882.
  • [60] V.T. Tarvainen, H. Patiala, T. Tunturi, I. Paronen, K. Lauslahti, P. Rokkanen. Bone growth into porous glassy carbon implants, Acta Orthopaedica Scandinavica 56 (1985) 63-66.
  • [61] V.T. Tarvainen, T.O. Tunturi, I. Paronen, K.R. Lauslahti, E.T. Lehtinen, P.U. Rokkanen, J. Rautavuori, P. Törmälä, H.V. Pätiälä, Glassy carbon implant as a bone graft substitute: an experimental study on rabbits, Clinical Materials 17/2 (1994) 93-98.
  • [62] K.L. Elias, R.L. Price, T.J. Webster, Enhanced functions of osteoblasts on nanometre diameter carbon fibers, Biomaterials 23/15 (2002) 3279-3287.
  • [63] A. Balin, Research on increasing the durability of composite biomaterials for orthopedics, Research Project No. N N518 383837, 2009-2012 (in Polish).
  • [64] E. Kolczyk, Durability of polymer cement for use in orthopedics, PhD Thesis, Silesian,University of Technology, Katowice, 2010 (in Polish).
  • [65] P. Colombi, Fatigue analysis of cemented hip prosthesis: model definition and damage evolution algorithms, International Journal Fatigue 24 (2002) 895-901.
  • [66] S.R. Tatro, G.R. Baker, K. Bisht, J.P. Harmon, A MALDI, TGA, TG/MS, and DEA study of the irradiation effects on PMMA, Polymer 44 (2003) 167-176.
  • [67] A. Balin, Preliminary results of surgical cement modification with glassy carbon, Physiotherapy 2/16 (2008) 63-69.
  • [68] A. Balin, The effect of a glassy carbon additive to surgical cement on its durability and adaptation in the organism, Engineering of Biomaterials 18/131 (2015) 12-31 (in Polish).
  • [69] A. John, A. Balin, The influence of bone cement modified with glassy carbon on effort state of pelvic joint after reconstruction, Proceedings of the 16th International Conference „Mechanics", Kaunas, 2011, 143-148.
  • [70] A. Balin, G. Junak, Investigation of cyclic creep of surgical cements, Archives of Materials Science and Engineering 28/5 (2007) 281-284.
  • [71] A. Balin, G. Junak, Low-cycle fatigue of surgical cements, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 211-214.
  • [72] E. Kolczyk, A. Balin, Application of the rheological model for the assessment of the influence of glassy carbon admixture on the cyclic creep of surgical cement, Current Problems of Biomechanics - Scientific Papers of the Department of Applied Mechanics 3 (2009) 99-104.
  • [73] M. Wekwejt, B. Świeczko-Żurek, M. Szkodo, Requirements, modifications and test methods of bone cement - literature review, European Journal of Medical Technologies 16/3 (2017) 1-10.
  • [74] I. Koh, Y. Gombert, C. Persson, H. Engqvist, B. Helgason, S.J. Ferguson, Ceramic cement as a potential stand-alone treatment for bone fractures: an in vitro study of ceramic-bone composites, Journal of the Mechanical Behavior of Biomedical Materials 61 (2016) 519-529.
  • [75] J. Martänez-Moreno, C. Mura, V. Merino, A. Nácher, M. Climente, M. Merino-Sanjuán„ Study of the Influence of Bone Cement Type and Mixing Method on the Bioactivity and the Elution Kinetics of Ciprofloxacin, Journal of Arthroplasty 30/7 (2015) 1243-1249.
  • [76] G. Massazza, A. Bistolfi, E. Verná, M. Miola, L. Ravera, F. Rosso, Antibiotics and cements for the prevention of biofilm-associated infections, in: Biomaterials and Medical Device - Associated Infections, Woodhead Publishing Limited, 2015, 185-197.
  • [77] A.C. Matos, L.M. Gonçalves, P. Rijo, M.A. Vaz, A.J. Almeida, A.F. Bettencourt, A novel modified acrylic bone cement matrix. A step forward on antibiotic delivery against multiresistant bacteria responsible for prosthetic joint infections, Materials Science and Engineering C 38 (2014) 218-226.
  • [78] P. Prokopovich, R. Leech, C.J. Carmalt, I.P. Parkin, S. Perni, A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties, International Journal of Nanomedicine 8 (2013) 2227-2237.
  • [79] M. Miola, M. Bruno, G. Maina, G. Fucale, G. Lucchetta, E. Verné, Antibiotic-free composite Bone cements with antibacterial and bioactive properties. A preliminary study, Materials Science and Engineering C 43 (2014) 65-75.
  • [80] E. Paz, P. Sanz-Ruiz, J. Abenojar, J. Vaquero-Martin, F. Forroiol, J.C. Del Real, Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: comparative 'in vitro' study of the influence of vancomycin and cefazolin, Journal of Arthroplasty 30/8 (2015) 1423-1429.
  • [81] J. Slane, J. Vivanco, W. Rose, H.L. Ploeg, M. Squire, Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles, Materials Science and Engineering C 48 (2015) 188-196.
  • [82] S.C. Shen, W.K. Ng, Y.C. Dong, J. Ng, R.B.H. Tan, Nanostructured material formulated acrylic bone cements with enhanced drug release, Materials Science and Engineering C 58 (2016) 233-241.
  • [83] B. Świeczko-Żurek, The influence of biological environment on the appearance of silver coated implants, Advances in Materials Science and Engineering 12/2 (2012) 245-250.
  • [84] H. Tan, S. Guo, S. Yang, X. Xu, T. Tang, Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement, Acta Biomaterialia 8/6 (2012) 2166-2174.
  • [85] R. Ormsby, T. McNally, P. O'Hare, G. Burke, C. Mitchell, N. Dunne, Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes, Acta Biomaterialia 8 (2012) 1201-1212.
  • [86] X. Banse, T.J. Sims, A.J. Bailey, Mechanical properties of adult vertebral cancellous bone: Correlation with collagen intermolecular cross-links, Journal of Bone and Mineral Research 17 (2002) 1621-1628.
  • [87] F.J. Hou, S.M. Lang, S.J. Hoshaw, D.A. Reimann, D.P. Fyhrie, Human vertebral body apparent and hard tissue stiffness, Journal of Biomechanics 31 (1998) 1009-1015.
  • [88] E.F. Morgan, H.H. Bayraktar, T.M. Keaveny, Trabecular bone modulus-density relationships depend on anatomic site, Journal of Biomechanics 36 (2003) 897-904.
  • [89] S.M. Kurtz, M.L. Villarraga, K. Zhao, A.A. Edidin, Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures, Biomaterials 26 (2005) 3699-3712.
  • [90] L.E. Jasper, H. Deramond, J.M. Mathis, S.M. Belkoff, Material properties of various cements for use with vertebroplasty, Journal of Materials Science: Materials in Medicine 13 (2002) 1-5.
  • [91] F. Grados, C. Depriester, G. Cayrolle, N. Hardy, H. Deramond, P. Fardellone, Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty, Rheumatology 39 (2000) 1410-1414.
  • [92] A.T. Trout, D.F. Kallmes, K.F. Layton, K.R. Thielen, J.G Hentz, Vertebral endplate fractures: An indicator of the abnormal forces generated in the spine after vertebroplasty, Journal of Bone and Mineral Research 21 (2006) 1797-1802.
  • [93] H.J. Jiang, J. Xu, Z.Y. Qiu, X.L. Ma, Z.Q. Zhang, X.X. Tan, Y. Cui, F.Z. Cui, Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen, Materials 8 (2015) 2616-2634.
  • [94] M. Bai, H. Yin, J. Zhao, Y. Li, Y Yang, Y Wu, Application of pmma bone cement composited with bone-mineralized collagen in percutaneous kyphoplasty, Regenerative Biomaterials 4 (2017) 251-255.
  • [95] Z.Y. Qiu, I.S Noh, S.M. Zhang, Silicate-doped hydroxyapatite and its promotive effect on bone mineralization, Frontiers of Materials Science 7 (2013) 40-50.
  • [96] T. Li, X. Weng, Y. Bian, L. Zhou, F. Cui, Z. Qiu, Influence of Nano-HA coated bone collagen to acrylic (Polymethylmethacrylate) bone cement on mechanical properties and bioactivity, PLoS One 10 (2015) 012-018.
  • [97] J. Wu, S. Xu, Z. Qiu, P. Liu, H. Liu, X. Yu, F.-Z. Cui, Z. R. Chunhua, Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation, Journal of Biomaterials Applications 30 (2016) 722-731.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f36fdbe-fcc6-428e-ad00-70703cb6da93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.