Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS) tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
559--570
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., wz.
Twórcy
autor
- Eindhoven University of Technology Electromechanics and Power Electronics Group Department of Electrical Engineering, PO Box 513, 5600MB, Eindhoven, The Netherlands
autor
- Eindhoven University of Technology Electromechanics and Power Electronics Group Department of Electrical Engineering, PO Box 513, 5600MB, Eindhoven, The Netherlands
autor
- Eindhoven University of Technology Electromechanics and Power Electronics Group Department of Electrical Engineering, PO Box 513, 5600MB, Eindhoven, The Netherlands
Bibliografia
- [1] Butler H., Position Control in Lithographic Equipment [Applications of Control]. IEEE Control Systems 31(5): 28-47 (2011).
- [2] Jin J.X., Zheng L.H., Guo Y.G. et al., High-Temperature Superconducting Linear Synchronous Motors Integrated With HTS Magnetic Levitation Components. IEEE Trans. Applied Superconductivity 22(5): 5202617-5202617 (2012).
- [3] Pina J.M., Neves M.V., Alvarez A., Rodrigues A.L., Numerical Design Methodology for an All Superconducting Linear Synchronous Motor. Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, Costa de Caparica, pp. 553-562 (2011).
- [4] Pina J.M., Martins J., Control of an electromagnetic aircraft launch system based on a superconducting linear synchronous motor. Int. Conf. on Compatibility and Power Electronics, pp. 255-259 (2013).
- [5] Jin J., Zheng L., Trapped Field Attenuation Characteristics of HTS Bulk Magnet Exposed to External Traveling-Wave Magnetic Field in an HTSLSM. Physics Procedia 36: 866-871 (2012).
- [6] Oswald B., Best K.J., Maier T. et al., Conceptual design of a SC HTS linear motor. Superconductor Science and Technology 17(5): S445-S449 (2004).
- [7] Oswald B., Best K.J., Setzer M. et al., AC Application of HTS Conductors in Highly Dynamic Electric Motors. J. of Physics: Conference Series 43(1): 800-803 (2006).
- [8] Nguyen D.N., Ashworth S.P., Willis J.O. et al., A new finite-element method simulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes. Superconductor Science and Technology 23(2): 025001(2010).
- [9] Mikitik G., Mawatari A., Wan A., Sirois F., Analytical Methods and Formulas for Modeling High Temperature Superconductors. IEEE Trans. Appl. Supercond. 23(2): 8001920-8001920 (2013).
- [10] Grilli F., Pardo E., Stenvall A. et al., Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents. IEEE Trans. Appl. Supercond. 24(1):78-110 (2014).
- [11] Ainslie M.D., Flack T.J., Campbell A.M., Calculating transport ac losses in stacks of high temperaturę superconductor coated conductors with magnetic substrates using fem. Physica C: Superconductivity 472(1): 50-56 (2012).
- [12] Prigozhin L., Sokolovsky V., Computing AC losses in stacks of high-temperature superconducting tapes. Supercond. Sci. Technol. 24(7): 075012 (2011).
- [13] Zermeno V.M.R., Abrahamsen A.B., Mijatovic N. et al., Calculation of alternating current losses in stacks and coils made of second generation high temperaturę superconducting tapes for large scale applications. J. Appl. Phys. 114(17): 173901 (2013).
- [14] de Bruyn B.J.H., Jansen J.W., Lomonova E.A., Superconducting Linear Actuators for Highly Dynamic Motion. Int. Symposium on Linear Drives for Industry Appl., Aachen (2015).
- [15] Lahtinen V., Lyly M., Stenvall A., Tarhasaari T., Comparison of three eddy current formulations for superconductor hysteresis loss modelling. Supercond. Sci. Technol. 25(11): 115001 (2012).
- [16] COMSOL 4.3 Multiphysics User’s Guide (2012).
- [17] Kim Y.B., Hempstead C.F., Strnad A.R., Critical Persistent Currents in Hard Superconductors. Phys. Rev. Lett. 9:306-309 (1962).
- [18] www.superpower-inc-com, accessed March (2015).
- [19] Souc J., Pardo E., Vojenciak M., Gomory F., Theoretical and experimental study of AC loss in high temperature superconductor single pancake coils. Supercond. Sci. Technol. 22(1): 015006 (2009).
- [20] Grilli F., Sirois F., Zermeno V., Vojenciak M, Self-Consistent Modeling of the Ic of HTS Devices: How Accurate do Models Really Need to Be? IEEE Trans. Appl. Supercond. 24(6): 1-8 (2014).
- [21] Flux2D 11.2.2 User’s Guide (2014).
- [22] Tasaki K., Marukawa K., Hanai S. et al., HTS Magnet for Maglev Applications (1) Coil Characteristics. IEEE Trans. Appl. Supercond. 16(2): 1100-1103 (2006).
- [23] Nemoto K., Terai M., Igarashi M. et al., HTS Magnet for Maglev Applications (2) Magnet Structure and Performance. IEEE Trans. Appl. Supercond. 16(2):1104-1107 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f354d60-9c43-4722-9349-6dc1d371f1d4