PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of tool rotational speed on the tribological characteristics of magnesium based AZ61A/TiC composite developed via friction stir processing route

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: A new composite material was prepared and Different properties such as hardness and tribological behaviour of the fabricated metal matrix composite (MMC) was investigated and compared with the base AZ61A magnesium alloy. Design/methodology/approach: For the current research work, state-of-the-art technology, Friction stir processing (FSP) was performed to develop magnesium based AZ61A/TiC composite at optimized set of machine parameters. Findings: Increasing tool rotational speed ultimately leads in enhanced hardness, which further gives superior tribological properties as compared to base AZ61A alloy. Wear observations suggests a combination of abrasive and adhesive wear mechanism. Research limitations/implications: More microstructural and mechanical properties can be examined. Practical implications: The idea behind selecting AZ61A is mainly due to its increasing use in bicycle pedals and military equipment’s where at certain places it needs to encounter friction. In this current work, microhardness study and wear behaviour of AZ61A/TiC composite processed via FSP were examined. Originality/value: Paper is completely new and no work has been done till date considering this material and preparing composite with nanoparticles TiC.
Rocznik
Strony
60--75
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • I.K. Gujral Punjab Technical University, Kapurthala, India
autor
  • Department of Mechanical Engineering, I.K. Gujral Punjab Technical University, Kapurthala, India
Bibliografia
  • [1] M. Gupta, N. Sharon, Magnesium, Magnesium alloys and magnesium composites, J. Wiley and Sons, 2010.
  • [2] I. Mukhin, E. Perevezentsev, O. Palashov, Fabrication of Composite Laser Elements by a New Thermal Diffusion Bonding Method, Optical Materials Express 4/2 (2014) 266-271. DOI: https://doi.org/10.1364/OME.4.000266
  • [3] A.K. Bodukuri, K. Eswaraiah, K. Rajendar, V. Sampath, Fabrication of Al-SiC-B4C Metal Matrix Composite by Powder Metallurgy Technique and Evaluating Mechanical Properties, Perspectives in Science 8 (2016) 428-431. DOI: https://doi.org/10.1016/j.pisc.2016.04.096
  • [4] Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, Fabrication of B4C Participate Reinforced Magnesium Matrix Composite by Powder Metallurgy, Journal of Alloys and Compounds 386/1-2 (2005) 177-181. DOI: https://doi.org/10.1016/j.jallcom.2004.06.015
  • [5] Th. Schubert, B. Trindade, T. Weißgärber, B. Kieback. Interfacial Design of Cu-Based Composites Prepared by Powder Metallurgy for Heat Sink Applications, Materials Science and Engineering: A 475/1-2 (2008) 39-44. DOI: https://doi.org/10.1016/j.msea.2006.12.146
  • [6] X. Wang, A. Jha, R. Brydson, In Situ Fabrication of Al3Ti Particle Reinforced Aluminium Alloy Metal-Matrix Composites, Materials Science and Engineering: A 364/1-2 (2004) 339-345. DOI: https://doi.org/10.1016/j.msea.2003.08.049
  • [7] B. Yang, F. Wang, J.S. Zhang, Microstructural Characterization of in Situ TiC/Al and TiC/Al-20Si-5Fe-3Cu-1Mg Composites Prepared by Spray Deposition, Acta Materialia 51/17 (2003) 4977-4989. DOI: https://doi.org/10.1016/S1359-6454(03)00292-1
  • [8] J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology 92-93 (1999) 1-7. DOI: https://doi.org/10.1016/S0924-0136(99)00118-1
  • [9] H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, M. Yoshida, Fabrication Process of Carbon Nanotube/Light Metal Matrix Composites by Squeeze Casting, Materials Science and Engineering: A 495/1-2 (2008) 282-287. DOI: https://doi.org/10.1016/j.msea.2007.11.088
  • [10] H. Hu, Squeeze Casting of Mg Alloy and Their Composites, Journal of Materials Science 33 (1998) 1579-1589. DOI: https://doi.org/10.1023/A:1017567821209
  • [11] M. Dhanashekar, V.S. Senthil Kumar, Squeeze casting of aluminium metal matrix composites - an overview, Procedia Engineering 97 (2014) 412-420. DOI: https://doi.org/10.1016/j.proeng.2014.12.265
  • [12] C.N. He, N.Q. Zhao, C.S. Shi, S.Z. Song, Mechanical Properties and Microstructures of Carbon Nanotube-Reinforced Al Matrix Composite Fabricated by in Situ Chemical Vapor Deposition, Journal of Alloys and Compounds 487/1-2 (2009) 258-262. DOI: https://doi.org/10.1016/j.jallcom.2009.07.099
  • [13] P. Delhaes, Chemical Vapor Deposition and Infiltration Processes of Carbon Materials, Carbon 40/5 (2002) 641-657. DOI: https://doi.org/10.1016/S0008-6223(01)00195-6
  • [14] R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing, Materials Science and Engineering R: Reports 50/1-2 (2005) 1-78. DOI: https://doi.org/10.1016/j.mser.2005.07.001
  • [15] H.S. Arora, H. Singh, B.K. Dhindaw, Composite Fabrication Using Friction Stir Processing - a Review, International Journal of Advanced Manufacturing Technology 61/9-12 (2012) 1043-1055. DOI: https://doi.org/10.1007/s00170-011-3758-8
  • [16] V. Sharma, U. Prakash, B.V. Manoj Kumar, Surface Composites by Friction Stir Processing: A Review Journal of Materials Processing Technology 224 (2015) 117-134. DOI: https://doi.org/10.1016/j.jmatprotec.2015.04.019
  • [17] G. Madhusudhan Reddy, A. Sambasiva Rao, K. Srinivasa Rao, Friction Stir Processing for Enhancement of Wear Resistance of ZM21 Magnesium Alloy, Transactions of the Indian Institute of Metals 66/1 (2013) 13-24. DOI: https://doi.org/10.1007/s12666-012-0163-4
  • [18] M. Abbasi, B. Bagheri, M. Dadaei, H.R. Omidvar, M. Rezaei, The Effect of FSP on Mechanical, Tribological, and Corrosion Behavior of Composite Layer Developed on Magnesium AZ91 Alloy Surface, International Journal of Advanced Manufacturing Technology 77/9-12 (2015) 2051-2058. DOI: https://doi.org/10.1007/s00170-014-6577-x
  • [19] J. Singh, H. Lal, N. Bala, Investigations on the wear behaviour of friction stir processed magnesium based AZ91 alloy, International Journal of Mechanical Engineering and Robotics Research 2/3 (2013) 271-274.
  • [20] H.S. Arora, H. Singh, B.K. Dhindaw, H.S. Grewal, Improving the Tribological Properties of Mg Based AZ31 Alloy Using Friction Stir Processing, Advanced Materials Research 585 (2012) 579-583. DOI: https://doi.org/10.4028/www.scientific.net/AMR.585.579
  • [21] H.S. Arora, H. Singh, B.K. Dhindaw, Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing, Wear 303/1–2 (2013) 65-77. DOI: https://doi.org/10.1016/j.wear.2013.02.023
  • [22] B. Ram, D. Deepak, N. Bala, Role of Friction Stir Processing in Improving Wear Behavior of Mg/SiC Composites Produced by Stir Casting Route, Materials Research Express 6/2 (2019) 026577. DOI: https://doi.org/10.1088/2053-1591/aaf1e4
  • [23] M. Azizieh, A.N. Larki, M. Tahmasebi, M. Bavi, E. Alizadeh, H.S. Kim. Wear Behavior of AZ31/Al2O3Magnesium Matrix Surface Nanocomposite Fabricated via Friction Stir Processing, Journal of Materials Engineering and Performance 27/4 (2018) 2010-2017. DOI: https://doi.org/10.1007/s11665-018-3277-y
  • [24] G. Faraji, P. Asadi, Characterization of AZ91/Alumina Nanocomposite Produced by FSP, Materials Science and Engineering: A 528/6 (2011) 2431-2440. DOI: https://doi.org/10.1016/j.msea.2010.11.065
  • [25] I. Dinaharan, S.C. Vettivel, M. Balakrishnan, E.T. Akinlabi, Influence of Processing Route on Microstructure and Wear Resistance of Fly Ash Reinforced AZ31 Magnesium Matrix Composites, Journal of Magnesium and Alloys 7/1 (2019) 155-165. DOI: https://doi.org/10.1016/j.jma.2019.01.003
  • [26] H. Patle, B. Ratna Sunil, R. Dumpala, Sliding Wear Behavior of AZ91/B4C Surface Composites Produced by Friction Stir Processing, Materials Research Express 7/1 (2020) 016586. DOI: https://doi.org/10.1088/2053-1591/ab6a55
  • [27] W.A. Monteiro, S.J. Buso, L.V. Silva, Application of Magnesium Alloys in Transport, in: W.A. Monteiro (ed.), New Features on Magnesium Alloys, IntechOpen, 1998, 1-14. DOI: https://doi.org/10.5772/48273
  • [28] C.-C. Lin, S.-J. Huang, C.-C. Liu, Structural analysis and optimization of bicycle frame designs, Advances in Mechanical Engineering 9/12 (2017) 1-10. DOI: https://doi.org/10.1177/1687814017739513
  • [29] Weblinks: Magnesium Applications. Available from: https://www.tms.org/Communities/FTAttachments/Mg%20Applications_Corporate.pdf
  • [30] S. Sharma, A. Handa, S.S. Singh, D. Verma, Synthesis of a Novel Hybrid Nanocomposite of AZ31Mg-Graphene-MWCNT by Multi-Pass Friction Stir Processing and Evaluation of Mechanical Properties, Materials Research Express 6/12 (2019) 126531. DOI: https://doi.org/10.1088/2053-1591/ab54da
  • [31] A.P. Sekhar, D. Das, Influence of Artificial Aging on Mechanical Properties and High Stress Abrasive Wear Behaviour of Al-Mg-Si Alloy, Metals and Materials International (2019). DOI: https://doi.org/10.1007/s12540-019-00399-9
  • [32] J.A. Valle, Friction Stir Processing of the Magnesium Alloy AZ61: Grain Size Refinement and Mechanical Properties, Materials Science Forum 706-709 (2012) 823-1828. DOI: https://doi.org/10.4028/www.scientific.net/MSF.706-709.1823
  • [33] D. Khayyamin, A. Mostafapour, R. Keshmiri, The Effect of Process Parameters on Microstructural Characteristics of AZ91/SiO2 Composite Fabricated by FSP, Materials Science and Engineering: A 559 (2013) 217-221. DOI: https://doi.org/10.1016/j.msea.2012.08.084
  • [34] S. Das, R.S. Mishra, K.J. Doherty, K.C. Cho, B. Davis, R. DeLorme, Magnesium Based Composite Via Friction Stir Processing, in: R. Mishra, M.W. Mahoney, Y. Sato, Y. Hovanski, R. Verma (eds), Friction Stir Welding and Processing VII, Springer, Cham, 245-252. DOI: https://doi.org/10.1007/978-3-319-48108-1_25
  • [35] G. Vedabouriswaran, S. Aravindan, Development and characterization studies on magnesium alloy (RZ 5) surface metal matrix composites through friction stir processing, Journal of Magnesium and Alloys 6/2 (2018) 145-163. DOI: https://doi.org/10.1016/j.jma.2018.03.001
  • [36] D. Ahmadkhaniha, M. Heydarzadeh Sohi, A. Salehi, R. Tahavvori, Formations of AZ91/Al2O3 nanocomposite layer by friction stir processing, Journal of Magnesium and Alloys 4/4 (2016) 314-318. DOI: https://doi.org/10.1016/j.jma.2016.11.002
  • [37] M. Azizieh, H.S. Kim, A.H. Kokabi, P. Abachi, B.K. Shahraki, Fabrication of AZ31/Al2O3 nanocomposites by friction stir processing, Reviews on Advanced Materials Science 28/1 (2011) 85-89.
  • [38] R. Sathiskumar, I. Dinaharan, N. Murugan, S.J. Vijay, Influence of Tool Rotational Speed on Microstructure and Sliding Wear Behavior of Cu/B4C Surface Composite Synthesized by Friction Stir Processing, Transactions of Nonferrous Metals Society of China 25/1 (2014) 95-102. https://doi.org/10.1016/S1003-6326(15)63583-X
  • [39] P. Asadi, M.K. Besharati Givi, G. Faraji, Producing Ultrafine-Grained AZ91 from as-Cast AZ91 by FSP, Materials and Manufacturing Processes 25/11 (2010) 1219-1226. DOI: https://doi.org/10.1080/10426911003636936
  • [40] J.F. Archard, Contact and rubbing of flat surfaces, Journal of Applied Physics 24/8 (1953) 981-988. DOI: https://doi.org/10.1063/1.1721448
  • [41] G. Faraji, O. Dastani, S. Ali Asghar, A. Mousavi. Effect of Process Parameters on Microstructure and Micro-Hardness of AZ91/Al2O3 Surface Composite Produced by FSP, Journal of Materials Engineering and Performance 20 (2011) 1583-1590. DOI: https://doi.org/10.1007/s11665-010-9812-0
  • [42] M. Dadashpour, A. Mostafapour, R. Yeşildal, S. Rouhi. Effect of Process Parameter on Mechanical Properties and Fracture Behavior of AZ91C/SiO2 Composite Fabricated by FSP, Materials Science and Engineering: A 655 (2016) 379-387. DOI: https://doi.org/10.1016/j.msea.2015.12.103
  • [43] M. Azizieh, A.H. Kokabi, P. Abachi, Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing, Materials and Design 32/4 (2011) 2034-2041. DOI: https://doi.org/10.1016/j.matdes.2010.11.055
  • [44] M. Navazani, K. Dehghani, Investigation of Microstructure and Hardness of Mg/TiC Surface Composite Fabricated by Friction Stir Processing (FSP), Procedia Materials Science 11 (2015) 509-514. DOI: https://doi.org/10.1016/j.mspro.2015.11.082
  • [45] R. Bauri, G.D. Janaki Ram, D. Yadav, C.N. Shyam Kumar, Effect of Process Parameters and Tool Geometry on Fabrication of Ni Particles Reinforced 5083 Al Composite by Friction Stir Processing, MaterialsToday: Proceedings 2/4-5 (2015) 3203-3211. DOI: https://doi.org/10.1016/j.matpr.2015.07.115
  • [46] M. Zohoor, M.K. Besharati Givi, P. Salami, Effect of Processing Parameters on Fabrication of Al-Mg/Cu Composites via Friction Stir Processing, Materials and Design 39 (2012) 358-365. DOI: https://doi.org/10.1016/j.matdes.2012.02.042
  • [47] D. Lu, Y. Jiang, R. Zhou, Wear Performance of Nano-Al2O3 Particles and CNTs Reinforced Magnesium Matrix Composites by Friction Stir Processing, Wear 305/1-2 (2013) 286-290. DOI: https://doi.org/10.1016/j.wear.2012.11.079
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f33851e-2e2d-4f58-a588-16b4394715d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.