PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Rheological Properties of Cement Composites Based on Waste Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This report presents the results and analysis of long-term properties of fiber-reinforced cement composite based on waste aggregate. The long-term tests were carried out on the stand proposed by the authors for simultaneously testing three beams with dimensions of 100x200x2900 mm. A total of 8 mixtures of cement composites with aggregate from ceramic waste and waste sand were tested. Three beams were made for each mixture. One without dispersed reinforcement and two with 0.5% and 1.0% fiber reinforcement ratios. As dispersed reinforcement, steel cord and hooked steel fibers were used. The beams were subjected to a four-point bending test. The research was carried out for 1000 days. An optical system was used as an innovative solution in long-term research. Based on the measurements, the creep coefficient in the mid-span of the beams was determined, and the crackings of the beams were analysed. The results obtained using manual measuring devices and the optical system were compared. A good convergence of measurement methods was observed. During the analysis of the results, the coefficients modifying the method for calculating the crack width included in Eurocode 2 were determined.
Rocznik
Tom
Strony
159--173
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Poland
autor
  • Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Poland
Bibliografia
  • Alrshoudi, F., Mohammadhosseini, H., Tahir, M.M., Alyousef, R., Alghamdi, H., Alharbi, Y., Alsaif, A. (2020). Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. Journal of Building Engineering, 32, 101522. https://doi.org/10.1016/j.jobe.2020.101522
  • Al-Tikrite, A., Hadi, M.N.S. (2017). Mechanical properties of reactive powder concrete containing industrial and waste steel fibres at different ratios under compression. Construction and Building Materials, 154, 1024-1034. https://doi.org/10.1016/j.conbuildmat.2017.08.024
  • Awoyera, P.O., Ndambuki, J.M., Akinmusuru, J.O., Omole, D.O. (2018). Characterisation of ceramic waste aggregate concrete. HBRC Journal, 14(3), 282-287. https://doi.org/10.1016/j.hbrcj.2016.11.003
  • Babafemi, A.J., Sirba, N., Paul, S.C., Miah, M.J. (2022). Mechanical and Durability Assessment of Recycled Waste Plastic (Resin8 & PET) Eco-Aggregate Concrete. Sustainability, 14(9), 5725. https://doi.org/10.3390/su14095725
  • Borhan, T.M., Abo Dhaheer, M.S., Mahdi, Z.A. (2020). Characteristics of Sustainable Self-compacting Concrete Reinforced by Fibres from Waste Materials. Arabian Journal for Science and Engineering, 45(5), 4359-4367. https://doi.org/10.1007/s13369-020-04460-3
  • Cao, W., Liu, Y., Qiao, Q., Feng, Y., Peng, S. (2020). Time-Dependent Behavior of Full-Scale Recycled Aggregate Concrete Beams under Long-Term Loading. Materials, 13(21), 4862. https://doi.org/10.3390/ma13214862
  • Chen, P., Zhou, X., Zheng, W., Wang, Y., Bao, B. (2020). Influence of high sustained loads and longitudinal reinforcement on long-term deformation of reinforced concrete beams. Journal of Building Engineering, 30, 101241. https://doi.org/10.1016/j.jobe.2020.101241
  • Contreras-Marín, E., Anguita-García, M., Alonso-Guzmán, E.M., Jaramillo-Morilla, A., Mascort-Albea, E.J., Romero-Hernández, R., Soriano-Cuesta, C. (2021). Use of Granulated Rubber Tyre Waste as Lightweight Backfill Material for Retaining Walls. Applied Sciences, 11(13), 6159. https://doi.org/10.3390/app11136159
  • Domingo, A., Lázaro, C., Gayarre, F.L., Serrano, M.A., López-Colina, C. (2010). Long term deformations by creep and shrinkage in recycled aggregate concrete. Materials and Structures, 43(8), 1147-1160. https://doi.org/10.1617/s11527-009-9573-0
  • Domski, J., Katzer, J., Zakrzewski, M., Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 158, 18-28. https://doi.org/10.1016/j.jclepro.2017.04.165
  • EN 1097-3:2000. (2000). Tests for mechanical and physical properties of aggregates – Part 3: Determination of loose bulk density and voids.
  • EN 1097-6:2022. (n.d.). Tests for mechanical and physical properties of aggregates – Part 6: Determination of particle density and water absorption.
  • EN 1766:2017. (n.d.). Products and systems for the protection and repair of concrete structures. Test methods. Reference concretes for testing.
  • EN 1992-1-1. (n.d.). Eurocode 2: Design of concrete structures – Part 1-1 : General rules and rules for buildings.
  • Gayarre, F.L., González, J.S., Pérez, C.L.-C., Serrano López, M.A., Ros, P.S., Martínez-Barrera, G. (2019). Shrinkage and creep in structural concrete with recycled brick aggregates. Construction and Building Materials, 228, 116750. https://doi.org/10.1016/j.conbuildmat.2019.116750
  • Głodkowska, W., Laskowska-Bury, J., Kobaka, J. (2013). Wpływ włókien stalowych na kształtowanie właściwości kompozytu drobnokruszywowego. Materiały Budowlane, 9, 28-30 (in Polish)
  • Hong, S., Park, S.-K. (2016). Long-term behavior of fiber-reinforced-polymer-plated concrete beams under sustained loading: Analytical and experimental study. Composite Structures, 152, 140-157. https://doi.org/10.1016/j.compstruct.2016.05.031
  • Hosseini, S.A. (2020). Application of various types of recycled waste materials in concrete constructions. Advances in Concrete Construction, 9(5), 479-489.
  • Khaloo, A.R., Esrafili, A., Kalani, M., Mobini, M.H. (2015). Use of polymer fibres recovered from waste car timing belts in high performance concrete. Construction and Building Materials, 80, 31-37. https://doi.org/10.1016/j.conbuildmat.2015.01.011
  • Kim, Y.J., Choi, Y.W. (2012). Utilisation of waste concrete powder as a substitution material for cement. Construction and Building Materials, 30, 500-504. https://doi.org/10.1016/j.conbuildmat.2011.11.042
  • Kong, J., Cong, G., Ni, S., Sun, J., Guo, C., Chen, M., Quan, H. (2022). Recycling of waste oyster shell and recycled aggregate in the porous ecological concrete used for artificial reefs. Construction and Building Materials, 323, 126447. https://doi.org/10.1016/j.conbuildmat.2022.126447
  • Krawczyk, Ł., Gołdyn, M., Urban, T. (2017). O niedokładnościach systemów cyfrowej korelacji obrazu. Journal of Civil Engineering, Environment and Architecture, XXXIV(64), 259-270. (in Polish). https://doi.org/10.7862/rb.2017.120
  • Laskowska-Bury, J. (2009). Selected physico-mechanical properties fiber reinforced composite produced on waste aggregate. (in Polish)
  • Miàs, C., Torres, L., Turon, A., Sharaky, I.A. (2013). Effect of material properties on long-term deflections of GFRP reinforced concrete beams. Construction and Building Materials, 41, 99-108. https://doi.org/10.1016/j.conbuildmat.2012.11.055
  • Nakov, D. (2017). Experimental and Analytical Analysis of Creep of Steel Fibre Reinforced Concrete. Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/PPci.11184
  • Pająk, M., Krystek, M., Zakrzewski, M., Domski, J. (2021). Laboratory Investigation and Numerical Modelling of Concrete Reinforced with Recycled Steel Fibers. Materials, 14(8), 1828. https://doi.org/10.3390/ma14081828
  • Pappu, A., Saxena, M., Asolekar, S.R. (2007). Solid wastes generation in India and their recycling potential in building materials. Building and Environment, 42(6), 2311-2320. https://doi.org/10.1016/j.buildenv.2006.04.015
  • Peng, L., Zhao, Y., Zhang, H. (2021). Flexural behavior and durability properties of recycled aggregate concrete (RAC) beams subjected to long-term loading and chloride attacks. Construction and Building Materials, 277, 122277. https://doi.org/10.1016/j.conbuildmat.2021.122277
  • PN-B-06714-06:1976. (n.d.). Mineral aggregates - Research - Determination of apparent density in a measuring cylinder. (in Polish)
  • Şahan Arel, H. (2016). Recyclability of waste marble in concrete production. Journal of Cleaner Production, 131, 179-188. https://doi.org/10.1016/j.jclepro.2016.05.052
  • Saikia, N., de Brito, J. (2014). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236-244. https://doi.org/10.1016/j.conbuildmat.2013.11.049
  • Seara-Paz, S., González-Fonteboa, B., Martínez-Abella, F., González-Taboada, I. (2016). Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage. Construction and Building Materials, 122, 95-109. https://doi.org/10.1016/j.conbuildmat.2016.06.050
  • Seitl, S., Miarka, P., Šimonová, H., Frantík, P., Keršner, Z., Domski, J., Katzer, J. (2019). Change of Fatigue and Mechanical Fracture Properties of a Cement Composite due to Partial Replacement of Aggregate by Red Ceramic Waste. Periodica Polytechnica Civil Engineering, 63(1), 152-159. https://doi.org/10.3311/PPci.12450
  • Shafigh, P., Mahmud, H. Bin, Jumaat, M.Z. Bin, Ahmmad, R., Bahri, S. (2014). Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. Journal of Cleaner Production, 80, 187-196. https://doi.org/10.1016/j.jclepro.2014.05.051
  • Singh Shekhawat, B., Aggarwal, V. (2007). Utilisation of Waste Glass Powder in Concrete-A Literature Review. International Journal of Innovative Research in Science, Engineering and Technology (An ISO (Vol. 3297). Retrieved from www.ijirset.com
  • Tan, K.H., Saha, M.K. (2005). Ten-Year Study on Steel Fiber-Reinforced Concrete Beams Under Sustained Loads. ACI Structural Journal, 102.
  • Tošić, N., Marinković, S., Pecić, N., Ignjatović, I., Dragaš, J. (2018). Long-term behaviour of reinforced beams made with natural or recycled aggregate concrete and high-volume fly ash concrete. Construction and Building Materials, 176, 344-358. https://doi.org/10.1016/j.conbuildmat.2018.05.002
  • Vasanelli, E., Micelli, F., Aiello, M.A., Plizzari, G. (2014). Crack width prediction of FRC beams in short and long term bending condition. Materials and Structures, 47(1-2), 39-54. https://doi.org/10.1617/s11527-013-0043-3
  • Zakrzewski, M., Domski, J. (2023). Cracking Behavior and Deflections in Recycled-Aggregate Beams Reinforced with Waste Fibers Subjected to Long-Term Constant Loading. Materials, 16(10), 3622. https://doi.org/10.3390/ma16103622
  • Zakrzewski, M., Sanok, A., Domski, J. (2023). Rheological Properties of Concrete Based on Waste Materials. International Scientific Conference – Environmental Challenges in Civil Engineering II. ECCE 2022. Lecture Notes in Civil Engineering, vol 322. Springer, Cham. (175-184). https://doi.org/10.1007/978-3-031-26879-3_14
  • Zhu, P., Mao, X., Qu, W., Li, Z., Ma, Z.J. (2016). Investigation of using recycled powder from waste of clay bricks and cement solids in reactive powder concrete. Construction and Building Materials, 113, 246-254. https://doi.org/10.1016/j.conbuildmat.2016.03.040
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f2e79e6-095f-4d99-b842-b2a313f806d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.