PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of continuous radon gas concentration telemonitoring for predictive seismic hazard assessment in Manado, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abnormal increases in radon gas (222Rn) concentrations in soil, groundwater, and atmosphere have been consistently observed as precursors of seismic activity, especially near active faults. In this study, we focus on earthquake prediction using IoT-based radon monitoring near the active fault in Manado, North Sulawesi, Indonesia, where seismic activity is high due to interactions between the Eurasian, Pacific, and Philippine plates. Radon gas concentration telemonitoring collected in real-time every minute between October 2023 and August 2024 was analyzed along with seismic data above M4.5 to predict earthquakes with magnitude 4.5 and above. This telemonitoring system enables continuous data storage every minute, with data accessible on the dataalamdiy web server, despite radon concentration readings on the detector updating every 10 minutes to filter out emissions from Thoron and Actanium sources.The results showed that earthquake date prediction sensitivity was 84%, accuracy was 75%, and the average prediction time was 2.65 days before the earthquake. The prediction was based on statistical algorithms derived from the daily average of radon gas concentration fluctuations, which resulted in an effective early warning system. One of the largest earthquakes M6.7 on January 9, 2024, was predicted 2 days ago. These findings highlight the possibility of integrating radon gas concentration anomaly analysis into disaster prevention strategies and provide an important lead time for preparedness efforts in seismically active areas. This research will significantly contribute to earthquake prediction methodology in Indonesia, especially in less-studied areas such as North Sulawesi, improving regional disaster preparedness and resilience.
Twórcy
  • Department of Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Senolowo, Sinduadi, Mlati, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
  • Department of Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Senolowo, Sinduadi, Mlati, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
autor
  • Department of Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Senolowo, Sinduadi, Mlati, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
  • Departement of Chemical Engineering, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ciwaruga, Parongpong, Bandung Barat, Jawa Barat 40012, Indonesia
  • Sensor and Tele-control Laboratory, Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Senolowo, Sinduadi, Mlati, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
autor
  • Sensor and Tele-control Laboratory, Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Senolowo, Sinduadi, Mlati, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
  • Sensor and Tele-control Laboratory, Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Senolowo, Sinduadi, Mlati, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
Bibliografia
  • 1. Alam, A., Nikolopoulos, D., & Wang, N. (2023). fractal patterns in groundwater radon disturbances prior to the great 7.9 Mw Wenchuan Earthquake, China. Geosciences, 13(9), Article 9. https://doi.org/10.3390/geosciences13090268
  • 2. Alam, A., Wang, N., Petraki, E., Barkat, A., Huang, F., Shah, M. A., Cantzos, D., Priniotakis, G., Yannakopoulos, P. H., Papoutsidakis, M., & Nikolopoulos, D. (2021). Fluctuation dynamics of radon in groundwater prior to the Gansu Earthquake, China (22 July 2013: Ms = 6.6): Investigation with DFA and MFDFA Methods. Pure and Applied Geophysics, 178(9), 3375–3395. https://doi.org/10.1007/ s00024-021-02818-8
  • 3. Alam, A., Wang, N., Zhao, G., & Barkat, A. (2020). Implication of radon monitoring for earthquake surveillance using statistical techniques: A case study of Wenchuan earthquake. Geofluids. https://doi.org/10.1155/2020/2429165
  • 4. Alfiandiansyah, A. (2024). Mekanisme dan Algoritma Sistem Peringatan Dini Gempa Bumi Berdasarkan Fluktuasi Gas Radon di Stasiun Telemonitoring Kupang [Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/detail/241229
  • 5. Asencio-Cortés, G., Morales-Esteban, A., Shang, X., & Martínez-Álvarez, F. (2018). Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure. Computers and Geosciences, 115(May 2017), 198–210. https://doi.org/10.1016/j.cageo.2017.10.011
  • 6. Asim, K. M., Martínez-Álvarez, F., Basit, A., & Iqbal, T. (2017). Earthquake magnitude prediction in Hindukush region using machine learning techniques. Natural Hazards, 85(1), 471–486. https://doi.org/10.1007/s11069-016-2579-3
  • 7. Badan Meteorologi Klimatologi dan Geofisika. (2021). Seismisitas Sulawesi Utara. Stasiun Geofisika Manado. https://stageof-manado.bmkg.go.id/ seismisitas-sulawesi-utara/
  • 8. Baubron, J.-C., Rigo, A., & Toutain, J.-P. (2002). Soil gas profiles as a tool to characterise active tectonic areas: The Jaut Pass example (Pyrenees, France). Earth and Planetary Science Letters, 196(1), 69–81. https://doi.org/10.1016/S0012-821X(01)00596-9
  • 9. Cember, H., & Johnson, T.E. (2009). Introduction to health physics (4th ed). McGraw-Hill Medical.
  • 10. Chen, Z., Li, Y., Liu, Z., Wang, J., Zhou, X., & Du, J. (2018). Radon emission from soil gases in the active fault zones in the Capital of China and its environmental effects. Scientific Reports, 8(1). Scopus. https://doi.org/10.1038/s41598-018-35262-1
  • 11. Daffa, A. (2024). Rancang Bangun Algoritma Sistem Peringatan Dini Gempa Bumi Berdasarkan Fluktuasi Konsentrasi Gas Radon Di Stasiun Telemonitoring Kebumen [Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/ detail/242078
  • 12. Google. (2024). Google Maps. https://www.google. co.id/maps
  • 13. Hajikhodaverdikhan, P., Nazari, M., Mohsenizadeh, M., Shamshirband, S., & Chau, K.-W. (2018). Earthquake prediction with meteorological data by particle filter-based support vector regression. Engineering Applications of Computational Fluid Mechanics, 12(1), 679–688. Scopus. https://doi.or g/10.1080/19942060.2018.1512010
  • 14. Harahap, F.F.D. (2024). Mekanisme dan Algorima Sistem Peringatan Dini Gempa Bumi Berdasarkan Fluktuasi Konsentrasi Gas Radon Stasiun Telemonitoring Padang [Universitas Gadjah Mada]. https:// etd.repository.ugm.ac.id/penelitian/detail/241198
  • 15. Herlambang, L. (2018). Detection System For Deterministic Earthquake Prediction Based On Changes Of The GWL And Radon Concentration. etd.repository.ugm.ac.id. http://etd.repository.ugm. ac.id/penelitian/detail/166673
  • 16. Ichbal Fahriyanto, Z. (2024). Mekanisme dan Algoritma Sistem Peringatan Dini Gempa Bumi Berdasarkan Fluktuasi Gas Radon Stasiun Telemonitoring Bali. Universitas Gadjah Mada.
  • 17. Ichedef, M., Sapmaz, İ., & Taşköprü, C. (2024). Analyzing temporal variations in radon concentrations: Identifying trends and changes. https://doi.org/10.21203/rs.3.rs-3932893/v1
  • 18. Internationale Atomenergie-Organisation. (2013). Measurement and calculation of radon releases from NORM residues (Y. Ishimori, Ed.). Internat. Atomic Energy Agency.
  • 19. Khan, M. A., Khattak, N. U., & Hanif, M. (2022). Radon emission along faults: A case study from district Karak, Sub-Himalayas, Pakistan. Journal of Radioanalytical and Nuclear Chemistry, 331(5), 1995– 2003. https://doi.org/10.1007/s10967-022-08283-4
  • 20. King, C. (1978). Radon emanation on San Andreas fault. Nature, Query date: 2021-11-17 08:00:04. https://www.nature.com/articles/271516a0
  • 21. King, C.-Y., King, B.-S., Evans, W. C., & Zhang, W. (1996). Spatial radon anomalies on active faults in California. Applied Geochemistry, 11(4), 497–510. https://doi.org/10.1016/0883-2927(96)00003-0
  • 22. Muto, J., Yasuoka, Y., Miura, N., Iwata, D., Nagahama, H., Hirano, M., Ohmomo, Y., & Mukai, T. (2021). Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake. Scientific Reports, 11(1), 7451. https://doi.org/10.1038/ s41598-021-86777-z
  • 23. Oka Pratama, T. (2021). Earthquake Early Warning System Based on Radon Gas Concentration and Groundwater Level Fluctuation at Yogyakarta Region-Indonesia [Thesis]. Universitas Gadjah Mada.
  • 24. Pratama, T.O., Sunarno, S., Wijatna, A.B., & Haryono, E. (2024). Cloud radon data for earthquake magnitude prediction using machine learning. IAES International Journal of Artificial Intelligence (IJ-AI), 13(4), 4572. https://doi.org/10.11591/ijai.v13.i4.pp4572-4582
  • 25. Pratama, T.O., Sunarno, Waruwu, M.M., & Wijaya, R. (2024). Earthquake Date Prediction Based on The Fluctuation of Radon Gas Concentration Near Grundulu Fault. 14(2).
  • 26. Seminsky, К., & Bobrov, А. (2015). The first results of studies of temporary variations in soilradon activity of faults in Western Pribaikalie. Geodynamics & Tectonophysics, Query date: 2021-11- 17 00:58:09. https://www.gt-crust.ru/jour/article/ view/1?locale=en_US
  • 27. Shuqi, C., Xibao, W., Haigang, L., Shuaihe, W., & Lei, X. (2022). The research on the influence of degassing temperatures of water samples on radon observations. Mathematical Problems in Engineering. Scopus. https://doi.org/10.1155/2022/2469012
  • 28. Sunarno, Firdaus, H.L., Luckyarno, Y.F., Waruwu, M.M., & Wijaya, R. (2020). Detection system for deterministic earthquake prediction based on radon concentration changes in Indonesia. Journal of Engineering Science and Technology, 15(3), 1787– 1798. Scopus.
  • 29. Sunarno, Waruwu, M.M., & Wijaya, R. (2016). Development of the real time telemonitoring system for earthquake prediction deduced from fluctuations in groundwater levels at Yogyakarta region-Indonesia. Journal of Theoretical and Applied Information Technology, 83(1), 95–99.
  • 30. Tehseen, R., Farooq, M.S., & Abid, A. (2020). Earthquake prediction using expert systems: A systematic mapping study. Sustainability, 12(6), 2420. https://doi.org/10.3390/su12062420
  • 31. Yanima Choirul Fikri, A. (2024). Mekanisme dan Algoritma Sistem Peringatan Dini Gempa Bumi Berdasarkan Fluktuasi Gas Radon Stasiun Telemonitoring Serang. Universitas Gadjah Mada.
  • 32. Zhao, Y., Liu, Z., Li, Y., Hu, L., Chen, Z., Sun, F., & Lu, C. (2021). A case study of 10 years groundwater radon monitoring along the eastern margin of the Tibetan Plateau and in its adjacent regions: Implications for earthquake surveillance. Applied Geochemistry, 131, 105014. https://doi.org/10.1016/j.apgeochem.2021.105014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f2c522d-137a-4082-9e02-1cac38da0268
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.