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NONPARAMETRIC METHODS OF SUPERVISED
CLASSIFICATION

Selected nonparametric methods of statistical pattern recognition are described. A part of them form mod-
ifications of the well known k-NN rule. To this group of the presented methods belong: a fuzzy k-NN rule,
a pair-wise k-NN rule and a corrected k-NN rule. They can improve classification quality as compared with
the standard k-NN rule. For the cases when these modifications would offer to large error rates an approach
based on class areas determination is proposed. The idea of class areas can be also used for construction of the
multistage classifier. A separate feature selection can be performed in each stage.

The modifications of the k-NN rule and the methods based on determination class areas can be too slow
in some applications, therefore algorithms for reference set reduction and condensation, for simple NN rule, are
proposed. To construct fast classifiers it is worth to consider also a pair-wise linear classifiers. The presented
idea can be used as in the case when the class pairs are linearly separable as well as in the contrary case.

1. INTRODUCTION

Pattern recognition deals with methods of object classification, where objects are understood in a very
general sense. It is assumed that each object is described by a set of features that forms a vector or a
point in the feature space, usually Euclidean one. The classification task consists in assigning a class to
an object. However, the decision rule is not known. The classes are not defined by their descriptions,
but in statistical manner, i.e. by a set of objects with known class membership called a training set. The
decision rule must be derived from the information contained in this set. The class membership of the
object can be crisp, when it can belong to one class only or fuzzy, when it’s membership is distributed
between all considered classes, represented in the training set.

The probability of misclassification is usually used as a classification quality criterion. It can be
estimated by an error rate calculated with a use of a separate testing set or on a basis of the training
set using, for instance, the leave one out method. This method consists in classification of each object
u from the training set U by the decision rule derived from the set U − {u} [11].

Any object, described in the feature space by a vector x, belongs to each of the considered classes
j, j = 1, 2, . . . , nc, with a certain unknown probability p(j/x). The ideal classifier ought to assign to
an object x a class i that corresponds to the highest value of p(j/x), so p(i/x) = maxjp(j/x). The
probabilities p(j/x) are unknown but they can be estimated by the well known k-NN rule [2], i.e.
p(j/x) = kj/k, where kj is a number of objects from the class j among k nearest neighbors of x.
The standard k-NN rule assigns to the object x the class i such that ki/k = maxj(kj/k). As it was
presented in the work [1], the k-NN rule outperforms other known classifiers like Fuzzy ArtMap, RBF
or neural classifiers trained by back propagation methods.
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2. FUZZY k-NN RULE

The probabilities p(j/x), j = 1, 2, . . . , nc, can be written in the form of a fuzzy membership vector
vf = [p(1/x), p(2/x), . . . , p(nc/x)]. Also the crisp (nonfuzzy) membership of the object x to the class j
can be written as a vector vc = [01, 02, . . . , 1j, . . . , 0nc]. Such notation is more general because comprises
the both membership types. It is very convenient too. Applying the k-NN rule first the fuzzy membership
vector vf = [k1/k, k2/k, . . . , knc/k] can be computed as a mean of the membership vectors of nearest
neighbors. For instance, let v1,NN = [1, 0], v2,NN = [0, 1], v3,NN = [0, 1] be the class membership
vectors, in a two class task, of the first, second and the third nearest neighbor respectively. Then their
mean vector vf = [1/3, 2/3] forms the fuzzy decision that is converted into the crisp one vc = [0, 1],
where the value of 1 corresponds to the largest ratio kj/k, j = 1, 2, and the remaining components
equal to zero.

Each point xi in the feature space, usually Euclidean one, occupied by an object from the training set
U , belongs to the class j with unknown probability p(j/xi). It concerns also to the nearest neighbors
of the classified object. Thus, during voting, each nearest neighbor ought to distribute its voice between
all classes in accordance with the probabilities p(j/xi). Any object in the training set can be used as
a nearest neighbor, so the original crisp membership vectors of the form vi = [01, 02, . . . , 1j, . . . , 0nc],
i = 1, 2, . . . ,m, where m is a training set numerical force, ought to be replaced by the fuzzy ones. It
can be done by the use of the following formula:

vr+1
i = [pr+1

1,i , pr+1
2,i , . . . , pr+1

nc,i ] = (
k∑

h=1

vri,hNN + vri )/(k + 1). (1)

The vector vri,hNN is a membership vector of h-th nearest neighbor of the i-th object and the upper
index r is a number of sequential p(j/xi) approximation. It assumes at the beginning the value of 0.
The vector vri denotes a membership of the i-th object in the r-th approximation. It can be noticed that
if r = 0 then

vr+1
i = v1i = [k1/(k + 1), k2/(k + 1), . . . , (kl + 1)/(k + 1), . . . , knc/(k + 1)], (2)

where l is a class of the object i. In the approximation of p(j/xi) take part, by voting, as k nearest
neighbors of xi as well as the object xi itself. It is obvious that the object will give its voice in favor
of the class l. Components p1

j,i
of the vector v1i can be treated as a first approximation of the unknown

probabilities p(j/xi).
The estimation of the probabilities p(j/xi) can be improved by applying the learning scheme proposed

by the author in [3]. It consists in generating an infinite sequence:

(W0, k0, e0), (W1, k1, e1), (W2, k2, e2), . . . , (Wr, kr, er), (Wr+1, kr+1, er+1) . . . . (3)

If the subject of interest is crisp classification then W0 is a binary membership matrix consisted of crisp
membership vectors v0i = [01, 02, . . . , 1j, . . . , 0nc], i = 1, 2, . . . ,m and 1 ≤ j ≤ nc. It has m rows and
nc columns. Using the leave one out method and reviewing all possible numbers of nearest neighbors
one can find the value k0 of nearest neighbors offering the lowest error rate e0. Then, applying the
formula (1) with k = k0, the matrix W1 can be found. The rows of this matrix could be also found in
accordance with the formula (2). Next, the values kr and er for r ≥ 1, are determined by the leave one
out method. A number kr of nearest neighbors is chosen in such a way that kr-NN rule operating with
Wr offers the lowest error er. The matrix Wr+1 is determined on the basis of Wr and kr. Generation of
the sequence (3) is stopped when er+1 > er. Finally, the k-NN rule is used with the fuzzy membership
matrix Wr and k = kr. That is why it is called a fuzzy k-NN rule. It produces, similarly as the standard
version of k-NN rule, the fuzzy decision, which is next converted into a crisp one. Till now, it was
assumed that the subject of interest is a crisp classification.

However, there are some applications [13], where the components of fuzzy decision vector cannot be
interpreted as estimations of the probabilities p(j/x). The classification task consisted in recognition of
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contribution of different metals in alloys. The error e of a single classification is then calculated by the
formula:

e =
nc∑
j=1

|vj − wj|/2, (4)

where v = [v1, v2, . . . , vnc] and w = [w1, w2, . . . , wnc] are the true and assigned fuzzy membership
vectors respectively. The fuzzy error rate er can be calculated as a mean value of a single fuzzy errors
of the type (4). In the case of applying the leave one out method it is calculated according with the
following relation:

er = (1/m) ◦
m∑
i=1

(
nc∑
j=1

|vi,j − wi,j|/2), (5)

where m is the numerical force of the training set.

3. PAIR-WISE k-NN RULE

A multi-decision classifier can be constructed with some two-decision classifiers. One of the solutions
may be a construction of a parallel net of two-decision classifiers, a separate classifier for each pair of
classes, and then forming the final decision by voting of these two-decision classifiers as it is illustrated
in Fig. 1.
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Fig. 1. The structure of the pair-wise classifier.

This parallel network of two-decision classifiers should offer better performance than the standard
k-NN. It derives from the geometrical interpretation of both the discussed types of classifiers. In the
case of the standard classifier, the boundary separating any pair of classes i and j depends also on
the samples from the remaining classes. They have an influence on the value of k and on the selected
features if feature selection is being performed. These samples may act as a noise. The parallel net
may reduce this noise effect. By using the error rate estimated by the leaving-one-out method as a
criterion, we can find an optimum number of k for the k-NN rules and perform the feature selection
separately for each of the component classifiers. The pair-wise k-NN rule was proposed in [10] and then
experimentally verified in [4] using artificially generated data. In the experiments the classes occupied
areas as they are shown in the Fig. 2.

One thousand points, according with uniform distribution and precision 0.01, were generated in
each square. The standard and the parallel k-NN classifiers were applied. Ten such experiments were
performed. Error rates were calculated for all possible values of k and the best results were finally
chosen. The mean error rate for the standard k-NN rule was 0.400% while the pair-wise classifier
offered the error rate that was equal to 0.014%. After feature selection, performed separately for each
of the component classifiers, the error rate for the pair-wise classifier equaled 0.006%.

23



INVITED PAPERS

 

Class 3 

Class 1 Class 2 

200 

200 
0 

Fig. 2. Areas of classes used in experiments.

4. CORRECTED k-NN RULE

The class numerical force proportions in the training set ought to be approximately the same as in
the reality. However, in biomedical investigations very often appear data with missing feature values.
The training set has usually a form of a matrix contained m rows and n columns, where m is a training
set numerical force and n denotes a number of features. Pattern recognition methods require complete
data sets, so it can be necessary to reject some rows (objects) to receive data set without missing feature
values. In this manner the original class proportion in the training set can be destroyed. Such object
rejections influence on data standardization, error rate and confusion matrices calculation and also on the
k-NN rule, if this rule is being used. It especially complicates forward and backward feature selection
procedures since different feature combinations are reviewed and the set of rejected objects depends
on currently reviewed feature combinations. However, if the training set was gathered according with
real proportion of the class frequencies then class a priori probabilities p(j), j = 1, 2, . . . , nc, can be
determined before rejection of any object. These probabilities enable correction of the process of k-NN
classifier construction [5].

Data standardization
The global feature mean values and standard deviations can be calculated as functions of these

statistics determined for each class separately:

mvj =
nc∑
k=1

pk ◦mvk,j and sdj = (
nc∑
k=1

[pk ◦ (sd2k,j +mv2k,j)]−mv2j )
1/2, (6)

where mvj and sdj are global mean value and standard deviation respectively of the feature j, mvk,j
and sdk,j are also mean values and standard deviations of the feature j but calculated for the class k.
The values of mvj and sdj , found by formulas (6), are used for data standardization.

Misclassification rate
Let bk be an error rate calculated for the class k. Then the global error rate can be computed by the

formula:
b =

nc∑
k=1

pk ◦ bk. (7)

Confusion matrices
The matrix R = {rk,j}nck,j=1, where rk,j is a number of objects from the class k assigned to the class

j, does not require any correction.
The matrix P = {pk,j}nck,j=1, where pk,j is a probability that object from the class k will be assigned

to the class j, can be calculated as
pk,j = rk,j/mj, (8)
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where mj denotes number of object in the class j in the training set (after rejection of rows with missing
feature values).

The matrix Q = {qk,j}nck,j=1, where qk,j is a probability that object assigned to the class k comes in
fact from the class j, can be calculated as

qk,j = (rj,k/mj) ◦ pj/
nc∑
j=1

[(rj,k/mj) ◦ pj]. (9)

Decision rule
The classified object ought to be assign to the class i, which satisfies following formula:

qi = maxj(qj), (10)

where qj = (kj/mj) ◦ pj .
The relations (6)-(10) define completely the corrected k-NN rule. It can be noticed that the training

set with missing some feature values can be more effectively explored if the pair-wise structure will
be applied. Then each of the component two-decision classifiers can operate according to the corrected
k-NN rule.

5. CLASSIFICATION BASED ON CLASS AREAS DETERMINATION

The classifiers based on k-NN rule may offer too large values of an error rate to accept it. A reasonable
solution in such a case can be determination of class areas in the feature space. If the classified object
falls to area of one class only then classification can be performed with satisfactory confidence. Let
U1, U2, . . . , Unc be the subsets of the training set U representing different classes. The class areas Ai

can be defined by the following formulas:

ei = max d(Ui − {uj}, {uj}),
uj ∈ Ui

(11)

Ai = {x : d(Ui, {x}) ≤ ei}, (12)

where d(◦, ◦) is a distance function. The shapes of the areas Ai, for two dimensional case, two classes
and Euclidean distance measure are presented in the Fig. 3.

Fig. 3. Class areas A1, A2 and an overlap areas A1,2.

The object which fall only in one class area Ai is being assigned to the class i and this decision can be
treated as a confident one. If the classified object falls in a class overlap area then the decision can be
refused or a majority class in the overlap area is assigned or, for instance, the k-NN rule or its fuzzy
version can be applied. In this case the decision is less confident. The classifier refuse classification if
objects fall outside of all class area.
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The idea of the class overlap areas can be used for construction multistage classification. Objects which
belong to the class overlap area can form a training set for the next stage. To illustrate this approach
the Iris Data (http://archive.ics.uci.edu/ml/datasets.html) has been used and the results of computations
are given in Table 1. They were obtained by the use of the leave one out method [9]. In the first stage
the training set contained 150 objects, 46 were in class overlap area, 3 objects were outside each area,
so the decisions in these cases were refused.

The 46 objects from class overlap area formed a training set of the next, i.e. second stage and for
this stage similar computations were performed. Continuing such approach one can finally reach the
stage V. Finally, the 141 object were correctly classified, 3 were misclassified and for 6 objects this
multistage classifier refused decision making.

Table 1. Illustration of multistage classification on the example of Iris Data.

Situations - rows/stage number - columns I II III IV V Together
Training set numerical force for indicated stage 150 46 22 12 6 -

Number of objects in class overlap area 46 22 12 6 0 -
Number of object with refused decision 3 1 0 2 0 6

Number of misclassified objects 0 0 1 1 1 3
Number of correctly classified objects 101 23 9 3 5 141

The Iris Data is very small and it would be more reasonable to stop this procedure, for instance at stage
II, and to apply k-NN rule for set of 22 objects treating it as a training one.

The ideas of class areas and the pair-wise classifier structure can be combined, what was presented,
using real remote sensing data, in the work [8].

6. REFERENCE SET REDUCTION ALGORITHMS

The error rate may be not the only criterion that ought to be taken into account. Very often the classifier
must be applied to very large training sets and any type of k-NN rule cannot be accepted because
classification would be not sufficiently fast. Slight acceleration can be obtained by an approximation
of the k-NN, k > 1, by a simple 1-NN rule, but still distances between the classified object and all
objects in the training set must be computed. The whole training set is commonly used as a reference
set, i.e. as set that must be stored in the memory during classification. Further acceleration is possible
by reference set size reduction.

6.1. TOMEK’S ALGORITHM

There are numerous algorithms for the reference set reduction in the literature [6]. One very simple
algorithm, concerned two classes only, was proposed by Tomek in [15] and it will be described below
for an example.

At the beginning the reduced reference set is empty. For each pair of objects x and y, coming from
different classes, a hyperball with the centre in the point (x+ y)/2 and the radius r = d(x, y)/2, where
d(◦, ◦) is Euclidean distance measure, is constructed. If the interior of this hyperball does not contain
any object from the training set then both objects are qualified to the reduced reference set. The Fig.
4 illustrates how this algorithm operates. All objects, except of object x1 and x4 are qualified to the
reduced reference set by the Tomek’s method. The nearest neighbor classifier operating with the reduced
set can be defined by the line (1) in the Fig. 4.

6.2. REFERENCE SET REDUCTION AS A SELECTION OF ARTIFICIAL FEATURES

For each Tomek’s pair xi and xj of objects one can construct a hyperplane passing by the point
(xi + xj)/2, orthogonal to the vector (xi − xj) and oriented in such a way that objects from the class
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1 lie on its positive side and objects from the class 2 on its negative side. These hyperplanes can be
used to create artificial features, i.e. each hyperplane generates a feature, that assumes the value of +1
if an object lies on its positive side or on this hyperplane and assumes the value of −1 when it lies on
its negative side.

Fig. 4. Reference set reduction using Tomek’s method and artificial features.

The whole original training set can be converted in the new training set of objects described by
artificial features, as it was shown in the Table 2.

Table 2. The values of original and artificial features.

Object Class Feature c1 Feature c2 Feature c3,2 Feature c5,6 Feature c7,6
1 1 1,0 5,0 1 1 -1
2 2 4,0 2,0 -1 1 -1
3 1 3,0 2,0 1 1 -1
4 2 6,0 4,0 -1 -1 -1
5 1 3,0 4,0 1 1 -1
6 2 4,0 5,0 -1 -1 -1
7 1 4,0 7,0 -1 -1 1

Thus, two original features c1 and c2 were replaced by three artificial features c3,2, c5,6 and c7,6. Using
the leave one out method and city distance measure one can check that all three artificial features offer
the error rate equal 2/7 since two objects were misclassified (x2 and x7). After applying selection of
artificial features, using error rate calculating by the leave one out method and city distance measure,
it is easy to verify that the error rate for the two artificial features c3,2 and c7,6 is the lowest and equals
1/7 (only the object x7 is misclassified).

The classified object x must be converted into the artificial feature space and it will be assigned to
the class 1 if x = [1,−1] or x = [−1, 1] and to the class 2 if x = [−1,−1]. In the classification phase
only two hyperplanes or four objects (x2, x3, x6 and x7) of the new training set must be stored in the
computer memory. The objects x2, x3, x6 and x7 can form the reduced reference set in the new feature
space. One hyperplane is determined by the pair x3 and x2 while the second hyperplane is defined by
the pair x7 and x6. Finally, the classifier operating in the artificial feature space can be defined in the
original space by the dashed line (2) shown in the Fig. 4. It can be noticed that NN rule operates in
the artificial space faster than in the original one. So, it is expected that the costs of conversion the
classified objects into the new feature space will be worth to be paid.
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6.3. HYPERBALL DECISION RULE

The reference set reduction algorithm, presented in this section, consists in covering each class in
the training set by a certain number of hyperballs. Each hyperball contains objects from one class only
and hyperballs covering different classes do not intersect. If the classified object falls in any of these
hyperballs then it is assigned to the class associated with this hyperball otherwise it is qualified to the
class of a nearest hyperball. A distance between an object and a hyperball is understood as a distance
to its center decreased by its radius.

For each object x in the training set U , the distance d to the nearest object y from the opposite
class and the distance q to the farthest object from the same class as x but closer than the object y are
determined. The hyperball K(x, r) with the center in x and the radius r = (d + q)/2 contains some
objects from the training set, which create a certain set Z. The Fig. 5 illustrates how the hyperballs
K(x, r) are determined.

Fig. 5. The way of determination hyperball radius.

These hyperballs are then ordered in a sequence in the following way. As the first, a hyperball
K(x1, r1) that contains the greatest set Z1 of objects from the training set is selected. Finding the next
elements of this sequence can be defined in the recurrent manner. Let K(xj, rj), j = 1, 2, . . . , i, be
already created part of the above mentioned sequence and let the set Si = Z1 ∪ Z2 ∪ . . . ∪ Zi. As the
K(xi+1, ri+1) a hyperball with the set Zi+1 that contains the largest set of objects from the set U − Si

is selected.
Starting with a certain i0 it will be impossible to find K(x, r) with the set Z contained any object

from outside the set Sk, where k = i0 − 1. It is expected that the number k of hyperballs K(xj, rj),
j = 1, 2, . . . , k, will be significantly smaller than the numerical force m of the training set.

7. EFERENCE SET CONDENSATION ALGORITHM

The reference set can contain artificial objects. For instance, each class can be represented by its
gravity center, as it is commonly assumed in case of the minimum distance classifier. This classifier is
very fast but may offer not satisfactory value of an error rate. Another solution can consist in division
of the primary reference set U , i.e. the training set, by cutting hyperplanes into some subsets [7]. The
gravity centers of these subsets, with a class memberships as a majorities of their objects, will then
form the condensed reference set S. The set S is not a subset of the set R that is why it is not called
the reduced reference set. The original reference set can be divided into desired number of subsets.
Another author suggested to perform division in such a way that each subset will contain objects from
one class only, i.e. the number of subsets will be determined automatically.

Below, the version with the desired size of the condensed reference set R will be presented. The
algorithm starts with division of the set R into two subsets R1 and R2. Let at certain stage the set R
be divided into nc subsets Rj , j = 1, 2, . . . , nc. Furthermore, let D = Ri be the set that contains two
objects p

1
and p

2
with the largest distance between them, as compared to other sets Rj , and contains
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objects from two classes at least. The subset D is divided into the sets D1 and D2. Then Ri = D1 and
Rnc+1 = D2. In this way the number of subsets Rj increased form nc to nc+ 1. If the subsets Rj will
be exhausted then the subsets contained objects from one class only are further divided. More formally,
the algorithm may be described in the following way.

Definition of the algorithm
1. Put R1 := R, i := 1, nc := 1 and give the desired size nd of the condensed set;
2. In the set D = Ri find two objects p

1
and p

2
separated by the largest distance;

3. Divide the set D into two subsets D1 and D2, where d(◦, ◦) is a distance measure:
D1 := {p ∈ D : d(p, p

1
) ≤ d(p, p

2
)}, D2 := {p ∈ D : d(p, p

1
) > d(p, p

2
)};

4. nc := nc+ 1, Ri := D1, Rnc := D2;
5. If nc = nd, then go to 11;
6. Put J1 := {j : j ≤ nc} and Rj contains objects at least from two classes;
7. J2 := {j : j ≤ nc} − J1;
8. Put J := J1 if J1 is not empty, otherwise J := J2;
9. Find pairs of objects p

1
and p

2
separated by the largest distance in each subset Rj for j ∈ J and

determine an index i ∈ J of the set Ri with the largest distance between p
1

and p
2
;

10. Go to 3;
11. Find gravity centers of all obtained subsets Rj , j = 1, 2, . . . , nc, and put them to S.

The determination of the pairs of objects p
1

and p
2

separated by the largest distance can be replaced
by the pairs of mutually farthest objects [6]. The way of they determination is explained in the Fig. 6.

Fig. 6. The way of finding the mutually farthest objects.

In the case of situation shown in the Fig. 6, the algorithm starts with the objects x2. The farthest object
in relation to x2 is x4. Then the maximally distanced object from x4 is x1. Finally, a loop will be
obtained since x3 is it the farthest in relation to x1 and vice versa.

8. TRAINING SET EDITING FOR LINEAR SEPARABILITY

The most condensed reference set, as it was already mentioned above, consist of class gravity centers.
Such a condensed reference set is used in the case of the minimum distance classifier. The classification
task can concern two classes only. In this case the minimum distance classifier can be defined by a
hyperplane H0 passing in the middle between two gravity centers a and b and orthogonal to the vector
a− b, as it is illustrated in the Fig. 7.
The hyperplane H0 does not separate the classes 1 (crosses) and 2 (wheels) correctly. From among
hyperplanes parallel to H0 it is possible to find a hyperplane H1, which perfectly separates the sets
X1 and X2. This idea can be used also in the case when the sets X1 and X2 would be not linearly
separable [5]. It is easy to find the hyperplane H1, parallel to H0, separating correctly maximum number
of objects from the sets X1 and X2. Another approach consists in removing the objects which disturb
to separate the investigated sets by a hyperplane.

One dimensional case is sufficient to explain how the proposed procedure can operate. The illustrating
example is given in the Fig. 8.
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Fig. 7. The disadvantage of the minimum distance classifier.

Feature value 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Class symbol x x x -o x
x

x
o o -x o o o o

2. Class symbol x x x x
x

x
-o o -x o o o o

3. Class symbol x x x x
x x o o o o o

Fig. 8. The training set editing procedure for obtaining the linear class separability.

The extreme objects are d1 = [4] and c1 = [8], what was marked by the symbol ”-”, see row number
1. There are 4 crosses and 3 wheels (including c1 and d1) between c1 and d1, thus the crosses are in
majority. The area between c1 and d1 ought to belong rather to the class 1, so the object d1 = [4]
is rejected and the training set contains now objects listed in the row 2. In the obtained situation the
extreme objects are the wheel d2 = [6] and the cross c2 = c1 = [8]. There are 2 crosses and 2 wheels
between the objects c2 and d2, including these objects. In the case of ties appearing, both such objects
are removed, i.e. the cross c2 = [8] and the wheel d2 = [6], marked by ”-”, in the considered example.

Finally, see row 3, the extreme objects are c3 = [6] and d3 = [7] and no objects are marked by ”-”.
There are no objects between c3 and d3 except they themselves. It is easy to notice that the objects ci,
i = 1, 2 were on the right side in the relation to the objects di. They were in shorter distances to the
opposite classes than to the their own classes.

Algorithm definition
1. Find the gravity centers a and b of the classes 1 and 2.
2. Determine the hyperplane gB(x) = (a− b) ◦ (x− b).
3. From among objects from the class 1 find the object c such that gB(c) is the minimum value of

gB(x) for x ∈ X1 and the object d from the class 2 such that gB(d) is maximum of gB(x) for
x ∈ X2. Determine two hyperplanes gC(x) = (a− b) ◦ (x− c) = 0 and gD(x) = (a− b) ◦ (x− d).

4. If gB(c) > gB(d) then go to 8.
5. If gB(c) ≤ gB(d) then find the a number l1 of objects from the set X1 and a number l2 of objects

from the set X2 satisfied the condition: gC(x) ≥ 0 and gD(x) ≤ 0.
6. If l1 > l2 then remove the object d. When l2 > l1 then remove the object c. Remove c and d in

the case of l1 = l2.
7. Go to 3.
8. Determine the discriminant function h(x) = gC(x) + gD(x).

The function h(x) defines the classifier for the class pair 1 and 2. If h(x) ≥ 0, then the object x is
qualified to the class 1 otherwise it is assigned to the class 2. The algorithm can be improved if in the
step 8 the discriminant function h(x) will be determined in a such way that the hyperplane h(x) = 0
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is an optimum one, i.e. this hyperplane is maximally distanced from the nearest objects from the set
Y = Y1 ∪ Y2, where Y1 and Y2 are the sets obtained from the sets X1 and X2 by application the above
presented algorithm. An advantage of this modification is explained on the example shown in the Fig.
9. The hyperplane HAB is more desired than the hyperplane HCD, received in the step 8 of the above
presented algorithm. The simple procedure for finding the optimum hyperplane was proposed in the
paper [11].

Fig. 9. The algorithm improvement by determining the optimum separating hyperplane.

The algorithm for finding the optimum separating hyperplane consists in determination of two nearest
points a and b in the convex hulls of the sets Y1 and Y2 respectivelly, what was illustrated in the Fig.
10.

Fig. 10. The idea of algorithm for finding the optimum separating hyperplane.
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