PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Matrix methods in evaluation of integrals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method of evaluating the integrals through use of the matrix inversion, presented here, was introduced by J.W. Rogers and then generalized by Matlak, Słota and Wituła. This method is still developed and one of its other possible applications is presented in this paper. This application concerns a new way of evaluating the integral ʃ sec2n+1 xdx on the basis of the discussed method. Additionally, many other applications of the obtained original recursive formula for this type of integral are given here. Some of them are used to generate the interesting identities for inverses of the central binomial coefficients and the trigonometric limits. The historical view is also presented as well as the connections between the received and previously known identities.
Rocznik
Strony
103--112
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Department of Mathematics, Silesian University of Technology, Gliwice, Poland
  • Department of Mathematics Applications and Methods for Artificial Intelligence Silesian University of Technology, Gliwice, Poland
  • OpsTalent, Wrocław, Poland
  • Department of Mathematics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Parker, W.V. (1936). Integrating odd powers of sec x. Nat. Math. Magazine, 10, 294-296.
  • [2] Gould, H.W. (1972). Combinatorial Identities, Rev. ed. Morgantown: West Virginia University.
  • [3] Sprugnoli, R. (2006). Sums of reciprocals of the central binomial coefficients. Integers, 6, art. A27 (18 pp).
  • [4] Wituła, R., & Słota, D. (2008). Finite sums connected with the inverses of central binomial numbers and Catalan numbers. Asian-Eur. J. Math., 1, 439-448.
  • [5] Mattarei, S., & Tauraso, R. (2013). Congruences for central binomial sums and finite polylogarithms. J. Number Theory, 133, 131-157.
  • [6] Velleman, D.J. (2002). Partial Fractions, binomial coefficients, and the integral of an odd power of secq. Amer. Math. Monthly, 109, 746-749.
  • [7] Sury, B. (2008). A very short evaluation of an integral. Amer. Math. Monthly, 115, 901.
  • [8] Rogers Jr., J.W. (1997). Applications of linear algebra in calculus. Amer. Math. Monthly, 104, 20-26.
  • [9] Matlak, D., Matlak, J., Słota, D., & Wituła, R. (2014). Differentiation and integration by using matrix inversion. J. Appl. Math. Comput. Mech., 13(2), 63-71.
  • [10] Meemark, Y., & Sriwongsa, S. (2019). Antiderivatives and linear differential equations using matrices. Involve, 12, 151-156.
  • [11] Kalmykov, M.Y., & Kniehl, B.A. (2010). Sixth root of unity and Feynman diagrams: hypergeometric function approach point of view. Nuclear Physics B (Proc. Suppl.) 205-206, 129-134.
  • [12] Ablinger, J., Blumlein, J., & Schneider, C. (2014). Generalized harmonic, cyclotomic, and binomial sums, their polylogarithms and special numbers. J. Phys. Conf. Ser. 523, 012060.
  • [13] Hjortnaes, M.M. (1953). Proc. 12th Scand. Math. Cong., 211-213.
  • [14] Ablinger, J. (2017). Discovering and proving infinite binomial sums identities. Experiment. Math., 26, 62-71.
  • [15] van der Poorten, A.J. (1978/79). A proof that Euler misssed. Math. Intelligencer, 1, 195-203.
  • [16] Borwein, J., & Bradley, D. (1997). Empirically determined Apéry-like formulae for ζ (4n+3). Experiment. Math., 6, 181-194.
  • [17] Lehmer, D.H. (1985). Interesting series involving the central binomial coefficient. Amer. Math. Monthly, 92, 449-457.
  • [18] Hetmaniok, E., Pia˛tek, B., Pleszczyn´ski, M., & Wituła, R. (2017). Identities for the inverses of central binominal coefficients. In R. Wituła., B. Bajorska-Harapi´nska, E. Hetmaniok., D. Słota, T. Trawi´nski (eds.). Selected Problems on Experimental Mathematics. Gliwice: Wyd. Pol. Śl., 219-231.
  • [19] Wituła, R., Hetmaniok, E., Słota, D., & Gawro´nska, N. (2013). Convolution identities for central binomial numbers. International J. Pure Appl. Math., 85(1), 171-178.
  • [20] Steingartner, W., & Galinec, Z. (2013). The róle categorical structures in infinitesimal calculus. J. Appl. Math. Comp. Mechanics, 12(1), 107-119.
  • [21] Costabile, F., & Longo, F.A. (2010). A determinantal approach to Appel polynomials. J. Comput. Appl. Math., 234(5), 1528-1542.
  • [22] Keleshteri, M.E., & Mahmudov, N.I. (2015). A study on q-Appell polynomials from determinantal point of view. Appl. Math. Comput., 260, 351-369.
  • [23] Khan, S., & Riyasat, M. (2015). A determinantal approach to Sheffer-Appell polynomials via monomiality principle. J. Math. Anal. Appl., 421, 806-829.
  • [24] Khan, S., & Riyasat, M. (2015). Determinantal approach to certain mixed special polynomials related to Gould-Hopper polynomials. Appl. Math. Comput., 251, 599-614.
  • [25] Kim, D.S., & Kim, T. (2015). A matrix approach to some identities involving Sheffer polynomial sequences. Appl. Math. Comput., 253, 83-101.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f24552c-313b-4ea6-a4f8-d0d87a4fefbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.