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Abstract  

Medical robots with an instant center of rotation mechanism in a trocar are used for operating 

a human body or servicing artificial organs. The result of the work is the development of a multi-

criteria optimization model of a discussed medical robot, considering safety factor, first 

eigenfrequency and buckling coefficient as a criteria. The article also analyzes two issues 

of mechanics, the natural frequency and linear buckling. A discrete mesh model of a novel robot 

design with ten degrees of freedom and ended with a scalpel was developed based on finite 

element method. For the given loads and supports, a multi-criteria optimization model was 

evolved, which was solved by using the response surface method and the multi-objective genetic 

algorithm. The results section shows the Pareto fronts for the criteria and geometrical dimensions 

of the kinematic chain. The courses of resonant vibrations and buckling strains were also 

characterized. The solved optimization model gives correct values for the adopted criteria. The 

values of resonance were defined, which makes it possible to select mechatronic drive systems in 

terms of the input they generate. Variability of the resonant vibrations phenomena, as well as 

shapes and directions of buckling, provide information about the displacements taking place in the 

medical robot system.  
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1. Introduction  

Vibrations of the medical robot structure are unacceptable due to the lack of accuracy at 

positioning and repeatability. The causes of vibrations of the medical robot are low 

stiffness, backlash, force input from a tissue cutting tool or servomotors. The operation 

of a medical robot in the ranges of dangerous arguments from the resonance curve cause 

an increase in the ordinate of the vibration amplitude and a decrease in accuracy at 

positioning and repeatability of the effector.  

The outcome of the work is to identify a mathematical model enabling 

the optimization of the first eigenvalue, describing free vibration assuming additional 

optimized criteria considered as significant, i.e. buckling factor and safety factor. 

Moreover, shapes of natural vibrations for next eigenvalues (resonance) and strains 

for subsequent values of buckling coefficients are analyzed. 

So far, researchers in various research centers have conducted some investigation 

in this area. For example, in research [1], the first natural frequency for the PUMA 560 

industrial robot, used to operate the human body, is appointed and it is stated to be 12.5 



Vibrations in Physical Systems 2020, 31, 2020306  (2 of 8) 

[Hz]. In some work, the authors show a medical robot with a constant point mechanism 

and in a numerical way define its first natural frequency as 2.5 [Hz]. The author of this 

work considers this frequency to be too low and criticizes the design due to  the work 

possibilities of this robot in the undesirable ranges of resonance curve, resulting from the 

movements enabling the functionality in the operating field. This results in a significant 

loss of accuracy at positioning and repeatability, and a loosening of the robot's 

mechanical system. Next work [2] states that the first natural frequency of industrial 

robots is about 10 [Hz]. 

A modern overview of robots currently used in medicine is shown in work [3]. The 

appliance of the finite element method (FEM) in the stress analysis of a modern medical 

robot with silicone elements based on the von Mises hypothesis is shown in work [6]. 

The articles [4,5] illustrate numerical modeling based on the computer aided design 

(CAD) model using the FEM. Optimization is performed and a significant reduction in 

the robot's displacement for surgical oncology is obtained. Topology optimization and 

the FEM are used in the article [7] and a 10.4% reduction in the weight of the 

rehabilitation robot, to the upper limb with five degrees of freedom is acquired. Multi-

criteria optimization, where the criteria is the natural frequency, speed value and static 

stiffness, is performed for a hybrid robot with five degrees of freedom in work [8]. In the 

paper [9], a genetic algorithm is used to solve the optimization model of the DELTA 

robot mechanism with a parallel geometry. 

Null-space-based optimization is used to simultaneously optimize the mass and 

friction of the robot in the article [10]. 

The following work aims to create a rational multi-criteria model for the adopted 

criteria and constraints. The optimization model is solved with the usage of a genetic 

algorithm. The practical effect of this work is to be an innovative, useful, and safe to use 

construction for the given criteria and limitations. 

2. Materials and methods 

The structure has ten degrees of freedom. It can be divided into maxi part having four 

degrees of freedom RTRR used to perform regional movements and mini part, ended 

with a scalpel, having six degrees of freedom RRRS to perform local movements near 

the tissue. Figure 1 shows the instantaneous center of rotation and marks the successive 

degrees of freedom. The finite element method was adopted to solve the computational 

model. The robot has been divided into finite elements SOLID187 and is a finite system 

with a total number of 33832 degrees of freedom. 
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Figure 1. The kinematic chain of a medical robot 

The calculation of the necessary stresses to determine the pre-stress phenomenon, 

appearing in the FEM analysis of the linear buckling phenomenon was performed based 

on the von Mises hypothesis. The Lanczos method for large symmetric systems [11] was 

used to solve the frequency and buckling eigenproblems. There are also other methods 

of solving eigenvalues issues, which were analyzed in work [12]. 

2.1. Eigenvalue problem for the linear buckling using finite element method 

The solution of the buckling issue comes down to the determination of eigenvalues, like 

buckling coefficients and eigenvector, which are buckling shapes, taking into account 

the static equilibrium equation and small displacements in the mechanical system. By 

determining the critical load ratio to the applied load as λ, it can be stated that buckling 

will occur in the mechanical system of the medical robot when λ <1. 

The equation describing the static equilibrium has the following form: 

 

   [𝑲] ∙ {𝒖} = {𝑭},                                                          (1) 

where: [𝑲] – stiffness matrix, {𝒖} – nodal displacement vector, {𝑭} – vector of nodal 

forces. The stiffness matrix is defined as: 

 

[𝑲] = ∫[𝑩]𝑇[𝑫][𝑩]

𝑉

𝑑𝑉, (2) 

where: [𝑩] – linear strain - displacement matrix, [𝑫] – constitutive matrix. 

Stress-stiffness matrix is determined by: 

[𝑲𝑮] = ∫[𝑮]𝑇[𝑺][𝑮]

𝑉

𝑑𝑉2, (3) 
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where: [𝑮] – obtained from shape functions by appropriate differentiation, [𝑺] – initial  

stresses. Knowing that: 

 
([𝑲] + [𝑲𝑮]) ∙ {𝒖} = {𝑭}, (4) 

 

it is stated simultaneously that while losing stability other states of equilibrium 

are possible. 
([𝑲] + 𝝀[𝑲𝑮]) ∙ {𝒖} = {𝑭}. (5) 

 
([𝑲] + 𝝀[𝑲𝑮]) ∙ {𝒖 + 𝜹𝒖} = {𝑭}. (6) 

 

After subtracting the equations, the symmetrical problem that defines the stability 

of the substitution system is obtained to solve: 

 
([𝑲] + 𝝀[𝑲𝑮]) ∙ {𝜹𝒖} = {𝟎}. (7) 

 

where: 𝝀  – eigenvalues, which are load coefficients, 𝜹𝒖 – eigenvector, which is the 

shape of buckling. 

 

2.2. Eigenvalue problem for the natural frequency using finite element method 

 

Solving the eigenfrequency problem is to discover the eigenvalues that are resonant 

frequencies and the eigenvectors that are the shapes of the resonant vibrations. When 

the value of the natural frequency is equal to the value of the harmonic excitation 

frequency, a dangerous phenomenon of resonance and a significant increase in the 

amplitude of vibration takes place. 

Disregarding the Rayleigh damping, the equation describing the natural vibrations 

can be formed as: 

 
[𝑴] ∙ {𝒖̈} + [𝑲] ∙ {𝒖} = {𝟎}. (8) 

 

The mass matrix can be written as: 

 

[𝑴] = ∫ 𝜌[𝑵]𝑇

𝑉

[𝑵]𝑑𝑉, (9) 

where:𝜌 – density, [N] – matrix of shape function. 

The general solution of equation (8) has a following form: 

 
{𝒖} = 𝒖𝑨 ∙ cos(𝜔𝑡) + 𝒖𝑩 ∙ sin(𝜔𝑡), (10) 

 

{𝒖̈} = −𝝎2{𝒖}. (11) 

After substituting (11) to (8) the equation called eigenequation was obtained: 

 

([𝑲] − 𝜔2[𝑀]) ∙ {𝒖} = {𝟎}. (12) 
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where: 𝝎 – eigenvalues, which are natural frequencies of the effector, 𝒖 – eigenvectors, 

that are mode shapes of the effector.  

2.3. Multi-objective optimization model 

The optimization model formulated in this work assumes three criteria: safety factor, 

first natural frequency and buckling coefficient, characterizing the ratio of the load 

applied to the mechanical system to the Euler’s critical load. Restrictions were imposed 

on the model in the form of ranges for variability of dimensional parameters, value of the 

safety factor and the values of the frequency. The assumed issue is to find the values 

of decision variables d, for which the vectorized objective function will reach the 

optimal value. Therefore, from a mathematical point of view, the vector optimization 

problem should be solved. 

The objective function was adopted as follows: 

𝒇(𝒅) = {𝑓1(𝒅) ⟶ 𝑚𝑖𝑛, 𝑓2(𝒅) ⟶ 𝑚𝑎𝑥, 𝑓3(𝒅) ⟶ 𝑚𝑖𝑛}. (12) 

the following restrictions were adopted:  

𝑚𝑖𝑛 ≤ 𝑑1 ≤ 𝑚𝑎𝑥, 𝑚𝑖𝑛 ≤ 𝑑2 ≤ 𝑚𝑎𝑥, 𝑚𝑖𝑛 ≤ 𝑑3 ≤ 𝑚𝑎𝑥,  

𝑓1(𝒅) ≥ 4, 30𝐻𝑧 ≤ 𝑓2(𝒅) ≤ 40 𝐻𝑧 ,10 ≤  𝑓3(𝒅) ≤40, 
(13) 

 

where: 𝑓1(𝒅) – safety factor criterion, 𝑓2(𝒅)– first natural frequency criterion, 𝑓3(𝒅) –

buckling coefficient, 𝑑1 – dimension related to the diameter of the vertical column, 𝑑2 – 

dimension related to the diameter of the horizontal column, 𝑑3 – dimension of sleeve 

of  the last link. 

The optimization model is based on Pareto front. Pareto-optimality assumes solutions 

that are not dominated by a subset of the possible solutions of the model. The problem 

of searching for the optimal solution is solved by using the MOGA genetic algorithm. 

The solution is also based on a meta-model in the form of a response surface, i.e. 

a function created based on discrete data from numerical experiments using the FEM 

[13]. The use of the response surface method reduces the search area for the genetic 

algorithm. This decreases the computation time. 

3. Results 

Changes in resonant vibrations (eigenfunctions) for next natural frequencies of the 

mechanical model are presented in Figure 4. The first transverse in the XY plane and the 

second longitudinal in the XZ plane of free vibration shape have a bending harmonic 

character with amplitudes of 37.2 and 40.52 [mm].  

In the third and fourth XZ natural frequency, the corresponding longitudinal XY 

and transverse XZ bending vibrations begin with the amplitudes 107.74 and 141.54 

[mm]. High amplitude resonance vibrations may be risky for the operated patient. 
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Figure 4. Forms of natural vibrations of a medical robot 𝜔1..4 = 36.65, 40.52, 67.6, 

70.77 [Hz]. Buckling shapes of medical robot for 𝜆1..4 = 9.44, 9.62, 83.01, 85.5 

 

The linear buckling of the model was analyzed and it was found that the most 

exposed element was the last link of the regional movement mechanism. First and 

second degree of freedom tubular sections are not exposed to buckling. 

For the first buckling value, transverse deformations appear in the XY plane with 

an amplitude of 1.01 [mm]. For the second value, longitudinal strains appear in the XZ 

orthogonal direction with an amplitude of 1.14 [mm]. The third lateral buckling 

deformation takes place in the XY plane and has an amplitude of 1 [mm]. The amplitude 

of the fourth transverse deformation in the XZ plane is 1.15 [mm]. 

The buckling shapes and directions of the buckling strains, of which the amplitude 

is periodic, are shown in Figure 4. 
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Figure 6. Pareto fronts for criteria and decision variables d1, d2 and d3 

The optimization model was solved after 9 iterations. Figures 6 show the Pareto 

fronts, giving the basis for the optimal inference. The following results were obtained: 

𝑓1(𝒅) = 4.95 , 𝑓2(𝒅) = 34.77 [Hz], 𝑓3(𝒅) = 10.04. 

4. Conclusions  

The optimization model enables the calculation of correct, i.e. the best possible values 

for the adopted criteria and constraints. The best calculated safety factor gives the 

certainty that there is no danger from the strength point of view. The maximum natural 

frequency ensures the maximum robot’s rigidity. The buckling coefficient greater than 

unity guarantees that there will be no buckling phenomenon in the medical robot 

structure for the assumed boundary conditions. 

The vibrations of the robot's structure as a result of compatible input forces with 

resonance were examined. The shapes of vibrations inform about the nature of resonance 

deformations, directions of vibrations and their type. The numerical experiment made 

it possible to identify longitudinal and transverse bent vibrations. Dangerous places 

in the construction of the medical robot have been identified. Risky vibrations of the 

robot's endoscopic tool with large amplitudes were indicated, which definitely put the 

health of the operated patient at risk. The conducted analysis also provides the basis for 
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the selection of drives from the point of view of the generated forces on the kinematic 

chain. 

The buckling phenomenon was also assayed and the type of strains was found, which 

could occur during this phenomenon. 

The next stage of this work will be the optimal selection of balances for the 

subsequent degrees of freedom of the robot; a future prototype device intended 

to be used in hospitals. 
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