PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Understanding of RANS-modelled impinging jet heat transfer trough turbulence kinetic energy, momentum and energy budgets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impinging jets are one of the most effective techniques of heat transfer intensification, therefore they are continuously applied in various engineering areas. On the other hand, a numerical modelling of complex phenomena contributing to an overall heat transfer effect (and the Nusselt number value) is still not sufficient and suffers from lack of generalization. The extensive studies have been conducted to unify approach to the impinging jet modelling and construct the model (in Ansys Fluent software), which allows mirroring of the results. Presented work discusses differences in representation of impinging jet between various turbulence models based on the turbulence kinetic energy, momentum and energy budgets. It allows deep understanding of influence of geometrical and flow parameters on fluid mechanics phenomena interaction and final effect. The most significant results are connected with linking of Nusselt number distribution with analyzed budgets’ terms. Each term contributes to the distribution and cannot be omitted. Drawn conclusions explain the origin of reported in literature differences and includes suggestions, how to evaluate the Nusselt number distribution results coming from various turbulence models. At this stage of research to have a complete image of relation between the particular quantities budgets and heat transfer effect it is suggested to consider also the turbulence kinetic energy dissipation budget, which will fil opened by this research gap.
Rocznik
Strony
13--30
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
  • AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
Bibliografia
  • [1] Barbosa, F.V., Teixeira, S.F.C.F., & Teixeira, J.C.F. (2023). Convection from multiple air jet impingement ‒ A review. Applied Thermal Engineering, 218, 119307. doi: 10.1016/j.applthermaleng.2022.119307
  • [2] Chitsazan, A., Klepp, G.,& Glasmacher, B. (2021). Numerical prediction of the second peak in the Nusselt number distribution from an impinging round jet. International Journal of Heat and Technology, 39(4), 1243–1252. doi: 10.18280/ijht.390422
  • [3] Alekseenko, S.V., Bilsky, A.V., Dulin, V.M., & Markovich, D.M. (2007). Experimental study of an impinging jet with different swirl rates. International Journal of Heat and Fluid Flow, 28(6), 1340–1359. doi: 10.1016/j.ijheatfluidflow.2007.05.011
  • [4] Magagnato, F., Secchi, F., Forooghi, P., Straub, S., & Frohnapfel, B. (2021). DNS of turbulent heat transfer in impinging jets at different Reynolds and Prandtl numbers. World Congress in Computational Mechanics and ECCOMAS Congress, 300, 1–12. doi:10.23967/wccm-eccomas.2020.299
  • [5] van Hout, R., Rinsky, V., & Grobman, Y.G. (2018). Experimental study of a round jet impinging on a flat surface: Flow field and vortex characteristics in the wall jet. International Journal of Heat and Fluid Flow, 70, 41–58. doi: 10.1016/j.ijheatfluidflow.2018.01.010
  • [6] Menzler, J. E., Klusmann, M., Wulfmeier, M., Büschgens, D., & Pfeifer, H. (2023). Simulation of gas jet impingement cooling in continuous heat treatment lines with the ANSYS GEKO turbulence model. HTM - Journal of Heat Treatment and Materials,78(2), 91–104. doi: 10.1515/htm-2022-1042
  • [7] Ahmed, Z.U., Al-Abdeli, Y. M., & Guzzomi, F.G. (2017). Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. International Journal of Thermal Sciences, 114, 241–256. doi: 10.1016/j.ijthermalsci.2016.12.013
  • [8] Korinek, T., Frana, K., Hujer, J., & Škarohlíd, J. (2022). Influence of local grid refinement on prediction of impinging jet heat transfer using Scale-Resolving-Simulation methods. Case Studies in Thermal Engineering, 36, 102159. doi: 10.1016/j.csite.2022.102159
  • [9] Domino, S.P., & Wenzel, E.A. (2023). A direct numerical simulation study for confined non-isothermal jet impingement at moderate nozzle-to-plate distances: Capturing jet-to-ambient density effects. International Journal of Heat and Mass Transfer, 211,124168. doi: 10.1016/j.ijheatmasstransfer.2023.124168
  • [10] Huang, H., Sun, T., Zhang, G., Li, D., & Wei, H. (2019). Evaluation of a developed SST k–ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. International Journal of Heat and Mass Transfer, 139, 700–712. doi: 10.1016/j.ijheatmasstransfer.2019.05.058
  • [11] Zhang, G., Huang, H., Sun, T., Li, N., Zhou, B., & Sun, Z. (2019). Analysis of the performance of a new developed shear stress transport model in a turbulent impinging jet flow. Physics of Fluids, 31(11), 115110. doi: 10.1063/1.5118675
  • [12] Huang, H., Sun, T., Li, N., & Zhang, G. (2022). Sensitization of the modified SST model to the swirling and curvature for turbulent impinging jet heat transfer. International Journal of Heat and Mass Transfer, 182, 121980. doi: 10.1016/j.ijheatmasstransfer.2021.121980
  • [13] Huang, H., Sun, T., Zhang, G., Liu, M., & Zhou, B. (2021). The effects of rough surfaces on heat transfer and flow structures for turbulent round jet impingement. International Journal of Thermal Sciences, 166, 106982. doi: 10.1016/j.ijthermalsci.2021.106982
  • [14] Kaewbumrung, M., & Plengsa-Ard, C. (2023). Numerical simulation of jet impingement relaminarization using nonlinear eddy viscosity turbulence models. Engineering Applications of Computational Fluid Mechanics, 17(1), 2162132. doi: 10.1080/19942060.2022.2162132
  • [15] Siddique, M.U., Syed, A., Khan, S.A., & Meyer, J.P. (2022). On numerical investigation of heat transfer augmentation of flat target surface under impingement of steady air jet for varying heat flux boundary condition. Journal of Thermal Analysis and Calorimetry, 147(6), 4325–4337. doi: 10.1007/s10973-021-10785-4
  • [16] Kumar, A., Yogi, K., & Prabhu, S.V. (2023). Experimental and analytical study on local heat transfer distribution between smooth flat plate and free surface impinging jet from a circular straight pipe nozzle. International Journal of Heat and Mass Transfer,207, 124004. doi: 10.1016/j.ijheatmasstransfer.2023.124004
  • [17] Hussain, L., Khan, M.M., Masud, M., Ahmed, F., Rehman, Z., Amanowicz, Ł., & Rajski, K. (2021). Heat transfer augmentation through different jet impingement techniques: A state-of-the-art review. Energies, 14(20), 6458. doi: 10.3390/en14206458
  • [18] Wai, O.J., Gunnasegaran, P., & Hasini, H. (2022). A Review on Experimental and Numerical Investigations of Jet Impingement Cooling Performance with Nanofluids. Micromachines, 13(12),2059. doi: 10.3390/mi13122059
  • [19] Plant, R.D., Friedman, J., & Saghir, M.Z. (2023). A review of jet impingement cooling. International Journal of Thermofluids, 17,100312. doi: 10.1016/j.ijft.2023.100312
  • [20] Ries, F., Li, Y., Rißmann, M., Klingenberg, D., Nishad, K., Bohm, B., Dreizler, A., Janicka, J., & Sadiki, A. (2018). Database of nearwall turbulent flow properties of a jet impinging on a solid surface under different inclination angles. Fluids, 3(1), 1–22. doi:10.3390/fluids3010005
  • [21] Ries, F., Li, Y., Klingenberg, D., Nishad, K., Janicka, J., & Sadiki, A. (2018). Near-wall thermal processes in an inclined impinging jet: analysis of heat transport and entropy generation mechanisms. Energies, 11(6), 1354. doi: 10.3390/en11061354
  • [22] Nishino, K., Samada, M., Kasuya, K., & Torii, K. (1996). Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow. International Journal of Heat and Fluid Flow, 17(3), 193–201. doi: 10.1016/0142-727X(96)00040-9
  • [23] Kura, T., Fornalik-Wajs, E., Wajs, J., & Kenjeres, S. (2019). Heat transfer intensification by jet impingement – numerical analysisusing RANS approach. E3S Web of Conferences, 108, 01025. doi:10.1051/e3sconf/201910801025
  • [24] Kura, T., Fornalik-Wajs, E., Wajs, J., & Kenjeres, S. (2018). Local Nusselt number evaluation in the case of jet impingement. Journal of Physics: Conference Series, 1101(1), 012018. doi: 10.1088/1742-6596/1101/1/012018
  • [25] Kura, T., Fornalik-Wajs, E., Wajs, J., & Kenjeres, S. (2018). Turbulence models impact on the flow and thermal analyses of jet impingement. MATEC Web of Conferences, 240, 01016. doi:10.1051/matecconf/201824001016
  • [26] Kura, T., Wajs, J., Fornalik-Wajs, E., Kenjeres, S., & Gurgul, S. (2020). Thermal and Hydrodynamic Phenomena in the Stagnation Zone—Impact of the Inlet Turbulence Characteristics on the Numerical Analyses. Energies, 14(1), 105. doi: 10.3390/en14010105
  • [27] Gurgul, S., & Fornalik-Wajs, E. (2023). On the Measure of the Heat Transfer Performance of RANS Turbulence Models in Single Round Jet Impingement. Energies, 16(21), 7236. doi: 10.3390/en16217236
  • [28] Ansys Fluent, Release 18.1: Theory Guide. ANSYS Inc., 2018.
  • [29] Gurgul, S., & Fornalik-Wajs, E. (2023). Turbulent single round jet impingement – numerical data collection, V1, AGH University of Krakow. doi: 10.58032/AGH/2SRV8O
  • [30] Uddin, N., Neumann, S.O., & Weigand, B. (2013). LES simulations of an impinging jet: On the origin of the second peak in the Nusselt number distribution. International Journal of Heat and Mass Transfer, 57(1), 356–368. doi: 10.1016/j.ijheatmasstransfer.2012.10.052
  • [31] Hadžiabdić, M., & Hanjalić, K. (2008). Vortical structures and heat transfer in a round impinging jet. Journal of Fluid Mechanics, 596, 221–260. doi: 10.1017/S002211200700955X
  • [32] Hattori, H., & Nagano, Y. (2004). Direct numerical simulation of turbulent heat transfer in plane impinging jet. International Journal of Heat and Fluid Flow, 25(5), 749–758. doi: 10.1016/j.ijheatfluidflow.2004.05.004
  • [33] Wienand, J., Riedelsheimer, A., & Weigand, B. (2017). Numerical study of a turbulent impinging jet for different jet-to-plate distances using two-equation turbulence models. European Journal of Mechanics - B/Fluids, 61, 210–217. doi: 10.1016/j.euromechflu.2016.09.008
  • [34] Zuckerman, N., & Lior, N. (2005). Impingement Heat Transfer: Correlations and Numerical Modeling. Journal of Heat Transfer, 127(5), 544–552. doi: 10.1115/1.1861921
  • [35] Katti, V., & Prabhu, S.V. (2008). Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle. International Journal of Heat and Mass Transfer, 51(17–18), 4480–4495. doi: 10.1016/j.ijheatmasstransfer.2007.12.024
  • [36] Gao, N., Sun, H., & Ewing, D. (2003). Heat transfer to impinging round jets with triangular tabs. International Journal of Heat and Mass Transfer, 46(14), 2557–2569. doi: 10.1016/S0017-9310(03)00034-6
  • [37] Baughn, J.W., Hechanova, A.E., & Yan, X. (1991). An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. Journal of Heat Transfer, 113(4), 1023–1025. doi: 10.1115/1.2911197
  • [38] Baughn, J. W., & Shimizu, S. (1989). Heat transfer Measurements from a surface with uniform heat flux and an impinging jet. Journal of Heat Transfer, 111(4), 1096–1098. doi: 10.1115/1.3250776
  • [39] Lytle, D., & Webb, B. (1994). Air jet impingement heat transfer at low nozzle-plate spacings. International Journal of Heat and Mass Transfer, 37(12), 1687–1697. doi: 10.1016/0017-9310(94)90059-0
  • [40] Lee, D.H., Song, J., & Jo, M.C. (2004). The effects of nozzle diameter on impinging jet heat transfer and fluid flow. Journal of Heat Transfer, 126(4), 554–557. doi: 10.1115/1.1777583
  • [41] Tummers, M.J., Jacobse, J., & Voorbrood, S.G.J. (2011). Turbulent flow in the near field of a round impinging jet. International Journal of Heat and Mass Transfer, 54(23–24), 4939–4948. doi:10.1016/j.ijheatmasstransfer.2011.07.007
  • [42] Ansys Fluent, Release 18.1: ANSYS Fluent UDF Manual. ANSYS Inc., 2018.
Uwagi
[1] This research was supported by the Ministry of Education and Science.
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f1f0492-4c36-4c11-a5fa-a47758040567
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.