PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel brightness preserving joint histogram equalization technique for contrast enhancement of brain MR images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low contrast is a challenging factor in brain magnetic resonance (MR) images due to its structural complexity. Histogram equalization (HE) approach is often used in enhancing the contrast in brain MR images. However, the spatial information is not taken into account in this approach. Further, the problem of preserving structural details while retaining the brightness is also an important concern. To solve these, we suggest a novel stationary wavelet transform based brightness preserving joint histogram equalization (SWT-BPJHE) scheme for brain MR image contrast enhancement. Our contributions are – i) use of SWT to extract the low sub-band wavelength coefficients from the low contrast input image for enhancement, ii) to isolate the high frequency wavelength coefficients from enhancement, retaining the structural details, iii) to preserve brightness. The suggested scheme is experimented with synthetic brain MR images from BrainWeb and clinical images from Howard Whole Atlas databases. The performance is evaluated in terms of several validation indices followed by statistical analysis. The outcomes reveal the superiority of the suggested scheme in comparison to state-of-the-art methods.
Twórcy
  • Department of Electronics & Telecommunication Engineering, VSS University of Technology, Burla, India
  • Department of Electronics & Telecommunication Engineering, VSS University of Technology, Burla, India
  • Department of Electronics & Telecommunication Engineering, VSS University of Technology, Burla, India
  • Machine Intelligence Research Labs, Washington, USA
Bibliografia
  • [1] Kim YT. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 1997;43(1):1–8.
  • [2] Stark JA. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans Image Process 2000;9(5):889–96.
  • [3] Menotti D, Najman L, Facon J, Arau´ jo AD. Multi-histogram equalization methods for contrast enhancement and brightness preserving. IEEE Trans Consum Electron 2007;53 (3):1186–94.
  • [4] Ooi CH, Kong NS, Ibrahim H. Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans Consum Electron 2009;55(4):2072–80.
  • [5] Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Pearson Publishing Co.; 2017.
  • [6] Joseph J, Sivaraman J, Periyasamy R, Simi VR. An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images. Biocybern Biomed Eng 2017;37 (3):489–97.
  • [7] Sim KS, Tso CP, Tan YY. Recursive sub-image histogram equalization applied to gray scale images. Pattern Recogn Lett 2007;28(10):1209–21.
  • [8] Shahangian B, Pourghassem H. Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure. Biocybern Biomed Eng 2016;36(1):217–32.
  • [9] Senthilkumaran N, Thimmiaraja J. A study on histogram equalization for MRI brain image enhancement. In Proc. of Int. Conf. on Recent Trends in Signal Processing, Image Processing and VLSI, Association of Computer Electronics and Electrical Engineers 2014.
  • [10] Ismail WZ, Sim KS. Contrast enhancement dynamic histogram equalization for medical image processing application. Int J Imaging Syst Technol 2011;21(3):280–9.
  • [11] Wei Z, Lidong H, Jun W, Zebin S. Entropy maximisation histogram modification scheme for image enhancement. IET Image Proc 2014;9(3):226–35.
  • [12] Chen CM, Chen CC, Wu MC, Horng G, Wu HC, Hsueh SH, et al. Automatic contrast enhancement of brain MR images using hierarchical correlation histogram analysis. J Med Biol Eng 2015;35(6):724–34.
  • [13] Isa IS, Sulaiman SN, Mustapha M, Karim NK. Automatic contrast enhancement of brain MR images using average intensity replacement based on adaptive histogram equalization (AIR-AHE). Biocybern Biomed Eng 2017;37 (1):24–34.
  • [14] Agarwal M, Mahajan R. Medical image contrast enhancement using range limited weighted histogram equalization. Procedia Comput Sci 2018;125:149–56.
  • [15] Subramani B, Veluchamy M. MRI brain image enhancement using brightness preserving adaptive fuzzy histogram equalization. Int J Imaging Syst Technol 2018;28(3):217–22.
  • [16] Demirel H, Anbarjafari G. Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans Image Process 2010;20(5):1458–60.
  • [17] Yang Y, Su Z, Sun L. Medical image enhancement algorithm based on wavelet transform. Electron Lett 2010;46(2):120–1.
  • [18] Lidong H, Wei Z, Jun W, Zebin S. Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Proc 2015;9 (10):908–15.
  • [19] Murugachandravel J, Anand S. Wavelet based image enhancement using two stage adaptive histogram equalization. Int J Pure Appl Math 2018;118(8):539–44.
  • [20] Javadi S, Dahl M, Pettersson MI. Adjustable contrast enhancement using fast piecewise linear histogram equalization. In International Conference on Image and Graphics Processing. 2020; 57–61.
  • [21] Rao BS. Dynamic histogram equalization for contrast enhancement for digital images. Appl Soft Comput 2020;89 106114.
  • [22] Nigam M, Bhateja V, Arya A, Bhadauria AS. An evaluation of contrast enhancement of brain MR images using morphological filters. In Embedded Systems and Artificial Intelligence. 2020: 571-577. Springer, Singapore.
  • [23] Sahnoun M, Kallel F, Dammak M, Kammoun O, Mhiri C, Mahfoudh KB, et al. A modified DWT-SVD algorithm for T1-w brain MR images contrast enhancement. IRBM 2019;40 (4):235–43.
  • [24] Ullah Z, Farooq MU, Lee SH, An D. A hybrid image enhancement based brain MRI images classification technique. Med Hypotheses 2020;143 109922.
  • [25] Veluchamy M, Mayathevar K, Subramani B. Brightness preserving optimized weighted bi-histogram equalization algorithm and its application to MR brain image segmentation. Int J Imaging Syst Technol 2019;29(3):339–52.
  • [26] Wadhwa A, Bhardwaj A. Enhancement of MRI images of brain tumor using Grunwald Letnikov fractional differential mask. Multim Tools Appl 2020;79(35):25379–402.
  • [27] Ellingson BM, Patrick YW, Timothy FC. Evidence and context of use for contrast enhancement as a surrogate of disease burden and treatment response in malignant glioma. Neurooncology. 2018;20(4):457–71.
  • [28] Aida Kiviniemi, Maria G, Paul E, Janek F, Johan B, Heikki M. Gadolinium retention in gliomas and adjacent normal brain tissue: association with tumor contrast enhancement and linear/macrocyclic agents. Neuroradiology 2019;61(5):535–44.
  • [29] Eichinger P, Scho¨n S, Pongratz V, Wiestler H, Zhang H, Bussas M, et al. Accuracy of unenhanced MRI in the detection of new brain lesions in multiple sclerosis. Radiology 2019;291 (2):429–35.
  • [30] Bot JCJ, Mazzai L, Hagenbeek RE, Ingala S, Oosten BV, Sanchez-Aliaga E, et al. Brain miliary enhancement. Neuroradiology 2020;62(3):283–300.
  • [31] Zhang Y, Dong Z, Wu L, Wang S, Zhou Z. Feature extraction of brain MRI by stationary wavelet transform. In International Conference on Biomedical Engineering and Computer Science. 2010; 1–4.
  • [32] Agrawal S, Panda R, Mishro PK, Abraham A. A novel joint histogram equalization based image contrast enhancement. J King Saud Univ-Comput Inf Sci, 2019.
  • [33] BrainWeb: Simulated Brain Database: accessed in February, 2020. Available on: http://bic.mni.mcgill.ca/brainweb.
  • [34] Harvard Whole Brain Atlas Database: accessed in February, 2020. Available on: https://www.med.harvard.edu/AANLIB/ home.html.
  • [35] Ndajah P, Kikuchi H, Yukawa M, Watanabe H, Muramatsu S. An investigation on the quality of denoised images. Int J Circuit Syst Signal Process 2011;5(4):423–34.
  • [36] Chen SD. A new image quality measure for assessment of histogram equalization-based contrast enhancement techniques. Digital Signal Process 2012;22(4):640–7.
  • [37] Beghdadi A, Le Negrate A. Contrast enhancement technique based on local detection of edges. Comput Vision Graph Image Process 1989;46(2):162–74.
  • [38] Wang Q, Ward RK. Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans Consum Electron 2007;53(2):757–64.
  • [39] Celik T. Spatial mutual information and PageRank-based contrast enhancement and quality-aware relative contrast measure. IEEE Trans Image Process 2016;25(10):4719–28.
  • [40] Wang S, Ma K, Yeganeh H, Wang Z, Lin W. A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process Lett 2015;22(12):2387–90.
  • [41] Demsar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 2006;7:1–30.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f12a132-7111-47b6-8291-7fa8dee19eff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.