Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Although Ag-Pt system is crucial for several technological applications, investigations of the thermodynamic properties of this system are limited. In the present study, activity of silver at various temperatures in the platinum rich solid solution was measured by a solid electrochemical method and employing AgI as the solid electrolyte. The EMF was determined using a galvanic cell (–)|Ag|AgI|Ag – Pt alloy|C|Pt (+), which provided novel experimental data on thermodynamic properties of a Ag-Pt alloy. Activity, partial molar of Gibbs energy, enthalpy and entropy of silver in a solid solution containing 1 at % Ag between 573 and 673 K have been calculated. The results indicated that the activity of silver obtained in the present study shows a large positive deviation from the ideal Raoultian behavior. Microstructures of alloys with different compositions were also compared.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
191--197
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wzory
Twórcy
autor
- Aalto University, School of Chemical Engineering, Metallurgical Thermodynamic and Modelling Research Group, Espoo, Finland
- Institut Teknologi Bandung, Department of Metallurgical Engineering, Bandung, Indonesia
autor
- Institut Teknologi Bandung, Department of Metallurgical Engineering, Bandung, Indonesia
Bibliografia
- [1] F. K. Crundwell, M. Moats, V. Ramachandran, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, 2011 Elsevier.
- [2] F. Doerinckel, Z. Anorg. Chem. 54, 338-344 (1907).
- [3] C. H. Johansson, J. O. Linde, Ann. Phys. 6, 458-486 (1930).
- [4] A. Schneider, U. Esch, Z. Elektrochem. Angew. Phys. 49 (2), 72-89 (1943).
- [5] O. A. Novikova, A. A. Rudnitskii, J. Inorg. Chem. USSR. 2, 208-221(1957).
- [6] I. Karakaya, W. T. Thompson, J. Phase Equilibria 8 (4), 334-340 (1987).
- [7] P. Durussel, P. Feschotte, J. Alloys Comp. 239 (2), 226-230 (1996).
- [8] H. Okamoto, J. Phase Equil. 18 (5), 485 (1997).
- [9] R. Erni, T. Etter, H. Heinrich, G. Kostorz, Z. Metallkunde 92 (11), 1194-1196 (2001).
- [10] M. H. F. Sluiter, C. Colinet, A. Pasturel, Phys. Review B 73 (17), 174204 (2006).
- [11] G. L. Hart, S. Curtarolo, T. B. Massalski, O. Levy, Phys. Review X 3 (4), 041035 (2013).
- [12] R. H. Davies, A. T. Dinsdale, J. A. Gisby, J. A. Robinson, S. M. Martin, Calphad 26 (2), 229-71 (2002).
- [13] G. Hart, L. Nelson, R. Vanfleet, B. Campbell, M Sluiter, J. Neethling, E. Olivier, S. Allies, C. Lang, B. Meredig and C. Wolverton, Acta Mater. 124 (1), 325-332 (2017).
- [14] C. Tubandt, Z. Anorg. Allg. Chem. 115 (1), 105-126 (1921).
- [15] M. Tatsumisago, T. Saito, T. Minami, Thermochim. Acta 280, 333-341 (1996).
- [16] M. R. Johan, T. S. Leng, N. L. Hawari, S. Suan, Int. J. Electrochem. Sci. 6, 6235-6243 (2011).
- [17] D. Feng, P. Taskinen, J. Mater. Sci. 49 (16), 5790-5798 (2014).
- [18] M. Aspiala, F. Tesfaye, P. Taskinen, Electrochim. Acta 173, 649-655 (2015).
- [19] D. Sukhomlinov, P. Taskinen, J. Chem. Thermodyn. 93, 19-23 (2016).
- [20] A. Yazawa, Y. K. Lee, Trans. Japan Instit. Metals 11 (6), 411-418 (1970).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f127870-e76a-4a2b-a9f0-0849b6ac8142