PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and investigations of the ethanol microturbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the design analysis and experimental investigations of the microturbine set consisting of the microturbine with partial admission and permanent magnet generator. The microturbine was designed for operation with the vapour of ethanol as a working fluid. Microturbine unit was tested for different parameters of the working fluid and varying the electrical load. The examples and the comparison between experiment results and numerical simulations are shown and discussed in the paper.
Rocznik
Strony
41--54
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Domachowski Z.: Specificity of automatic control of microturbines (steam or gas - driven and expanders) in dispersed generation system of heat and electric power. Pol. Marit. Res. (2009); Spec. Iss. S1:9–13, https://doi.org/10.2478/v10012-008-0038-0.
  • [2] Junqi D., Xianhui Z., Jianzhang W.: Experimental investigation on heat transfer characteristics of plat heat exchanger applied in organic Rankine cycle (ORC). Appl. Therm. Eng. 112(2017), 1137–1152, https://doi.org/10.1016/j.applthermaleng.2016.10.190
  • [3] Wajs J, Mikielewicz D.: Effect of surface roughness on thermalhydraulic characteristics of plate heat exchanger. Key Eng. Materials, DOI: 10.4028/www.scientific.net/KEM.597.63.
  • [4] Wajs J., Mikielewicz D., Fornalik-Wajs E.: Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions. J. Physics: Conf. Ser. 745(2016), 032063. DOI: 10.1088/1742-6596/745/3/032063.
  • [5] Bonafoni G., Capata R.: Proposed design procedure of a helical coil heat exchanger for an orc energy recovery system for vehicular application. MMSE J. 1 (2015), DOI: 10.13140/RG.2.1.2503.5282
  • [6] Wajs J, Mikielewicz D, Fornalik-Wajs E, Bajor M.: Recuperator with microjettechnology as a proposal for heat recovery from low-temperature sources. Arch. Thermodyn. 36(2015), 4, 48–63, DOI: 10.1515/aoter-2015-0032
  • [7] Wajs J., Mikielewicz D., Fornalik-Wajs E., Bajor M.: High performance tubular heat exchanger with minijet heat transfer enhancement. Heat Transfer Eng., DOI: 10.1080/01457632.2018.1442369
  • [8] Mikielewicz D., Mikielewicz J., Wajs J.: Experiences from operation of different expansion devices for application in domestic micro CHP. Arch. Thermodyn. 31(2010), 4, 3–13, DOI: 10.2478/v10173-010-0023-8
  • [9] Xia G.-D., Zhang Y.-Q., Wu Y.-T. et al.: Experimental study on the performance of single-screw expander with different inlet vapor dryness. Appl. Therm. Eng. 87(2015), 34–40, https://doi.org/10.1016/j.applthermaleng.2015.05.006
  • [10] Yun E., Kim HD, Yoon SY, Kim AC.: Development and characterization of small-scale ORC system using scroll expander. Appl. Mech. Mater. 291-294(2013), 1627–30, https://doi.org/10.4028/www.scientific.net/AMM.291-294.1627
  • [11] Mascuch J., Novotny V., Vodicka V., Zeleny Z.: Towards development of 1-10 kW pilot ORC units operating with hexamethyldisiloxane and using rotary vane expander. Energy Procedia 129(2017), 826–833, DOI: 10.1016/j.egypro.2017.09.196
  • [12] Lampart P., Kosowski K., Piwowarski M., Jedrzejewski L.: Design analysis of Tesla micro-turbine operating on a low-boiling medium. Pol. Marit. Res. (2009); Spec. Iss. 28–33, DOI: https://doi.org/10.2478/v10012-008-0041-5
  • [13] Mikielewicz J., Piwowarski M., Kosowski K.: Design analysis of turbines for co-generating micro-power plant working in accordance with organic Rankine’s cycle. Pol. Marit. Res. (2009); Spec. Iss. S1 34–8, DOI: https://doi.org/10.2478/v10012-008-0042-4.
  • [14] Piwowarski M., Kosowski K.: Design analysis of combined gas-vapour micro power plant with 30 kW air turbine. Pol. J. Environ. Stud. 23(2014), 1397–1401.
  • [15] Mikielewicz D., Wajs J., Ziółkowski P., Mikielewicz J.: Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat. Energy 97(2016), 11–19, https://doi.org/10.1016/j.energy.2015.12.106
  • [16] Dumont O., Dickes R., De Rosa M. et al.: Technical and economic optimization of subcritical, wet expansion and transcritical organic Rankine cycle (ORC) systems coupled with a biogas power plant. Energ. Convers. Manage. 157(2018), 294–306, https://doi.org/10.1016/j.enconman.2017.12.022
  • [17] Campanari S., Boncompagni L., Macchi E.: Microturbines and trigeneration: Optimization strategies and multiple engine configuration effects. J. Eng. Gas Turb. Power 126(2004), DOI: 10.1115/1.1622410.
  • [18] Colombo L.P.M., Armanasco F., Perego O.: Experimentation on a cogenerative system based on a microturbine. Appl. Therm. Eng. 27(2007), 705–11, https://doi.org/10.1016/j.applthermaleng.2006.10.005
  • [19] Ho J.C, Chua K.J, Chou S.K.: Performance study of a microturbine system for cogeneration application. Renew. Energ. 29(2004), 1121–1133 https://doi.org/10.1016/j.renene.2003.12.005
  • [20] Mills D.: Advances in solar thermal electricity technology. Sol. Energy 76(2004), 19–31, https://doi.org/10.1016/S0038-092X(03)00102-6
  • [21] Fréchette L.G., Lee C., Arslan S.: Development of a MEMS-Based Rankine Cycle Steam Turbine For Power Generation.In: Proc. 4th Workshop on Micro and Nano Technology for Power Gene. & Energy Conv. Apps (Power MEMS’04), Kyoto, Nov. 28-30, 2004, 92–95.
  • [22] Ho T., Mao S.S., Greif R.: Increased power production through enhancements to the organic flash cycle (OFC). Energy 45(2012), 686–695, DOI:10.1016/j.energy.2012.07.023
  • [23] Mikielewicz D., Wajs J., Mikielewicz J.: Alternative cogeneration thermodynamic cycles for domestic ORC. Chem. Process Eng.-Inz. 39(2018), 1, 75–84, DOI: 10.24425/119100
  • [24] Duvia A, Gaia M.: ORC Plants for Power Production from Biomas from 0.4 MWe to 1.5 MWe: Technology, Efficiency, Practical Experiences and Economy. In: Proc. 7 Holzenergie Symopsium, Zurich 2002.
  • [25] Duvia A., Tavolo S.: Application of ORC Units in the Pellet Production Field: Technical-Economic Considerations and Overview of the Operational Results of an ORC Plant in the Industry Installed in Mudau (Germany). In: Proc. 7 Holzenergie Synopsium, Zurich 2002.
  • [26] Gailfuss M.: Private meets public – small scale CHP. Technological Developments, Workshop BHKW Infozentrum Rastatt Berlin Sept. 09, 2003.
  • [27] Rosfjord T., Tredway W., Chen A., Mulugeta J., Bhatia T.: Advanced Microturbine Systems. Final Report for Tasks 1 Through 4 and Task 6, Rep. No. DOE/CH/11060-1 prepared for The U.S. Department of Energy, Office of Distributed Energy, 2007.
  • [28] Simader G.R., Krawinkler R., Trnka G.: Micro CHP systems: state-of-the-art. Deliverable 8 (D8) of Green Lodges Project, EIE/04/252/S07.38608, Vienna 2006.
  • [29] Mills D.: Advances in solar thermal electricity technology. Sol. Energy 76(2004), 19–31, https://doi.org/10.1016/S0038-092X(03)00102-6
  • [30] Kosowski K., Włodarski W., Piwowarski M., Stepien R.: Performance characteristics of a micro-turbine. J. Vibration Eng. Technol. 2(2014), 341–350.
  • [31] Saiai P., Chaitep S., Bundhurat D., Watanawanyoo P.: An experimental investigation of vapor generator characteristics in a low-pressure turbine engine. Indian J. Sci. Technology 7(2014), 1130–1136.
  • [32] Wajs J., Mikielewicz D., Bajor M., Kneba Z.: Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module. Arch. Thermodyn. 37(2016), 3, 79–93, DOI: 10.1515/aoter-2016-0021
  • [33] Włodarski W.: Experimental research on microturbine sets. Fundacja Promocji POiGM, Gdańsk 2016 (in Polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f0f4da9-e1be-42ec-b6b3-fcef7431af31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.