PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlling Chaotic Systems Using Aggregated Linear Quadratic Regulator

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Sterowanie systemem chaotycznym z wykorzystaniem wypadkowego regulatora LQR
Języki publikacji
EN
Abstrakty
EN
A systematic design method for controlling chaotic systems is presented in this paper. The aggregated multiple local models are adopted to express chaotic systems. The Linear Quadratic Regulator (LQR) theory is proposed to design state feedback control system for each local model. Multi-model control strategy has come into being by combining of T-S fuzzy model and LQR. The global stability of closed loop control system can guarantee and it is illustrated with several chaotic systems as examples.
PL
Zaproponowano projekt sterowania systemem chaotycznym. Zaadaptowano wypadkowe (aggregated) połączenie wielu lokalnych modeli do opisu system chaotycznego. Każdy lokalny model jest sterowany z wykorzystaniem teorii LQR – linear quadratic regulator.
Rocznik
Strony
336--340
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
  • School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China
autor
  • School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China
Bibliografia
  • [1] Ott E, Grebogi C, Yorke J.A. Controlling chaos. Phys Rev Lett, 64 (1990), NO.11, 1196-1199.
  • [2] Fuh C.C, Tung P.C. Controlling chaos using differential geometric method. Phys Rev Lett, 75(1995),NO.16, 2952-2955.
  • [3] Chen G, Dong X. On feedback control of chaotic continuous time systems. IEEE Trans Circ Syst, 40(1993),NO.9, 591-601.
  • [4] Yassen M.T. Chaos control of Chen chaotic dynamical system. Chaos, Solitons & Fractals, 15(2003),NO.2, 271-283.
  • [5] Chen G, Yu X.H. On time-delayed feedback control of chaotic systems. IEEE Trans Circ Syst I,46(1999),NO.6, 767-772.
  • [6] Agiza H.N. Controlling chaos for the dynamical system of coupled dynamos. Chaos, Solitons & Fractals, 12(2002), NO.2, 341-352.
  • [7] Sanchez E.N, Perez J.P, Martinez M, Chen G. Chaos stabilization: an inverse optimal control approach. Latin American Applied Research, 32(2002)111-114.
  • [8] Yassen M.T. Adaptive control and synchronization of a modified Chua’s circuit system. Appl. Math Comp, 135 (2001), NO.1, 113-128.
  • [9] Liao T.L, Lin S.H. Adaptive control and synchronization of Lorenz systems. J Franklin Inst, 336(1999), NO.6, 925-937.
  • [10] Yassen M.T. Chaos control of chaotic dynamical systems using backstepping design. Chaos, Solitons & Fractals, 27 (2006), NO.2, 537-548.
  • [11] Yu X.H. Variable structure control approach for controlling chaos. Chaos, Solitons & Fractals, 8 (1997),NO.9, 1577-1586.
  • [12] Zou Y.L , Zhu J. Controlling the chaotic n-scroll Chua’s circuit with two low pass filters. Chaos, Solitons and Fractals, 29 (2006), NO.2, 400-406
  • [13] Bhajekar S, Jonckheere E, Hammad A. H∞ control of chaos. Proceedings of the 33rd Conference on Decision and Control. Lake Buena Vista, FL – December, (1994) 3285-3286
  • [14] Jiang G.P, Chen G, and Tang W.K.S. Stabilizing unstable equilibrium points of a class of chaotic systems using a state PI regulator. IEEE Transactions on Circuits and Systems—I: Fundamental Theory And Applications, 49 (2002), NO.12, 1820-1826
  • [15] Wang D. Genetic algorithm optimization based PID controller for unified chaotic system. ACTA Physica SINICA(in Chinese), 54 (2005), NO.4, 1495-1499
  • [16] Wang D, Han P. PID algorithm based chaotic system control using particle swarm optimization. ACTA Physica SINICA(in Chinese), 55 (2006), NO.4, 1644-1650
  • [17] Tanaka K, Ikeda T, Wang H.O. A unified approach to controlling chaos via an LMI-based fuzzy control system design. IEEE Trans. Circuits and Systems—I: Fundamental Theory and Applications, 45 (1998),NO.10, 1021-1040.
  • [18] Joo Y.H, Shieh L.S, Chen G. Hybrid state-space fuzzy modelbased controller with dual-rate sampling for digital control of chaotic systems. IEEE Trans. Fuzzy systems, 7 (1999),NO.4, 394-408
  • [19] Feng G, Chen G. Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos, Solitons and Fractals, 23 (2005) 459-467
  • [20] Oketani N, Ushio T, Hirai K. Decentralized control of chaos in nonlinear networks. Physics Letters A, 198 (1995) 327-332
  • [21] Cho J, Lan J, Principe J.C. and Motter M.A. Modelling and control of unkown chaotic systems via multiple models. IEEE Workshop on Machine Learning for Signal Processing, (2004)53-62
  • [22] Rafikov M, Balthazar J.M. On an optimal control design for Rössler system. Physics Letters A, 333 (2004) 241-245.
  • [23] Sugeno M, Kang G.T, Fuzzy modeling and control of multiplayer incinerator. Fuzzy Sets Syst, 28(1986)316-326
  • [24] Smith M, Johansen T.A, Multiple Model Approaches to Modeling and Control, Taylor & Francis Inc., (1997)
  • [25] Xie N, Leung H. Reconstruction of piecewise chaotic dynamic using a genetic algorithm multiple model approach. IEEE Trans. Circuits and Systems—II: Regular Papers, 51(2004) 1210-1222.
  • [26] Anderson B.D.O, Moore J.B. Optimal Control: Linear Quadratic Methods, Prentice Hall Ltd (1991).
  • [27] Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Syst., 45(1992),NO.2, 135-156.
  • [28] Yu X. Chen G, Xia Y, Song Y, Cao Z. An Invariant-Manifold-Based Method for Chaos Control. IEEE Trans. Circuits and Systems—II: Regular Papers, 48 (2001),NO.8, 930-937.
  • [29] Zheng D.Z. Linear System Theory. Beijing: Tsinghua University Press (in Chinese), (2002).
  • [30] Chen G, Zhou J, Celikovsky S. On LaSalle’s Invariance Principle and Its Application to Robust Synchronization of General Vector Lienard Equations. IEEE Trans. Automatic Control, 50(2005),NO.6, 869-874
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f0e88f2-8188-4fd2-8e2e-e2e0f3765a7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.