PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Possibilities and limitations of using iPhone 13 Pro with built-in LiDAR sensor in cave research – on the example of paleoflow analysis in Mylna Cave (Western Tatra Mts, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study tested the capabilities of the Apple iPhone 13 Pro device using two measurement techniques, LiDAR (Light Detection and Ranging) and SfM (Structure from Motion), in a cave environment by measuring scallops in Mylna Cave in Western Tatra Mountains. The tested device provides an interesting and inexpensive alternative for cave research using TLS (Terrestrial Land Scanner) type scanners or more expensive MLS (Mobile Laser Scanning) type scanners. The study used a dedicated 3D Scanner App™ application to create two terrain models: LiDAR and SfM. A comparative analysis of the models shows that the SfM model is characterised by greater detail. The results obtained for this model indicate that the scallops measured in Wielki Chodnik passage of Mylna Cave belong to at least two different generations of forms. In the LiDAR method case, the obtained models’ resolution was not precise enough to identify small (<3 cm) scallops. For three LiDAR models, the average length of scallops was 10.32 cm; for three SfM models, it was 5.16 cm. The length of scallops obtained from models allowed for calculating paleoflow velocity and, thus, the flow rate. The average velocity value for LiDAR models was 28.98 cm s−1, and for SfM models – 48.10 cm s−1 and the average flow rate obtained from SfM data was 1.93 m³ s−1. It corresponds well with the today-observed Kościeliski Potok flow rate of 1.7 m³ s−1 according to the 1966–2000 period (Baścik et al. 2014). On the contrary, the average paleoflow rate obtained from the LiDAR model, which is 0.94 m³ s−1, does not match the contemporary flow rate. Based on the asymmetry of scallops, the paleoflow direction was determined. It is consistent with the current direction of the Kościeliski Potok flow. The spatial imaging techniques used with iPhone 13 Pro differ regarding the DEM creation method and model details. It is influenced by parameters related to lighting, distance, scanned surface character and microclimatic conditions of the cave.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
51--62
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec, Poland
autor
  • Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Kraków, Poland
Bibliografia
  • Baścik M., Pociask-Karteczka J., Balon J., German K., Maciejowski W., 2014. Dolina Kościeliska: śladami badaczy, artystów i wędrowców. Wydawnictwo Tatrzański Park Narodowy, Zakopane.
  • Bauwens S., Bartholomeus H., Calders K.,Lejeune P., 2016. Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests 7(6): 127. DOI: 10.3390/f7060127.
  • Blumberg P.N., Curl R.L., 1974. Experimental and theoretical studies of dissolution roughness. Journal of Fluid Mechanics 65(4): 735–751.
  • Bretz J.H., 1942. Vadose and phreatic features of limestone caverns. The Journal of Geology 50(6, Part 2): 675–811.
  • Buchroithner M.F., 2015. Mountaincartography ‘down under’–Speleological 3D Mapping. Wiener Schriften zur Geographie und Kartographie 21(1): 93–204.
  • Coleman J.C., 1949. An indicator of water-flow in caves. In Proc. Univ. Bristol speleol. Soc. 6: 57–67.
  • Cosso T., Ferrando I., Orlando A., 2014. Surveying and mapping a cave using 3d laser scanner: the open challenge with free and open source software. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40: 181–186. DOI: 10.5194/isprsarchives-XL-5-181-2014.
  • Curl R.L., 1966. Scallops and flutes. Transactions of the Cave Research Group of Great Britain 7(2): 121–160.
  • Curl R.L., 1974. Deducing flow velocity in cave conduits from scallops. National Speleological Society Bulletin 36(2): 1–5.
  • Dabove P., Grasso N., Piras M., 2019. Smartphone-based photogrammetry for the 3D modeling of a geomorphological structure. Applied Sciences 9(18): 3884. DOI: 10.3390/app9183884.
  • De Waele J., Gutiérrez F., 2022. Karst Hydrogeology, Geomorphology and Caves. Wiley Blackwell.
  • Droin A., 2021. Delineation and morphometric analysis of micro-scale karstic forms (scallops) based on structure from motion digital elevation models. Master’s thesis, Karl-Franzens University of Graz.
  • Eitel J.U., Vierling L.A., Magney T.S., 2013. A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics. Agricultural and forest meteorology 180: 86–96. DOI: 10.1016/j.agrformet.2013.05.012.
  • Filar F., Parczewski M., 2015. System Jaskiń Pawlikowskiego. Jaskinie 2–3: 44–45.
  • Gallay M., Hochmuth Z., Kaňuk J., Hofierka J., 2016. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning. Hydrology and Earth System Sciences 20(5): 1827–1849. DOI: 10.5194/hess-20-1827-2016.
  • Gollob C., Ritter T., Kraßnitzer R., Tockner A., Nothdurft A. (2021). Measurement of forest inventory parameters with Apple iPad pro and integrated LiDAR technology. Remote Sensing 13(16): 3129. DOI: 10.3390/rs13163129.
  • GUGiK [Główny Urząd Geodezji i Kartografii], 2023. Geoportal Infrastrukturalny Informacji Przestrzennej. Online: www.geoportal.gov.pl – 18.02.2023.
  • Hercman H., 1985. Określenie prędkości i wielkości przepływu wody w korytarzach jaskiniowych na podstawie pomiarów zagłębień wirowych. Przegląd Geologiczny 33(10): 580.
  • James M.R., Quinton J.N., 2014. Ultra-rapid topographic surveying for complex environments: the hand-held mobile laser scanner (HMLS). Earth Surface Processes and Landforms 39(1): 138–142. DOI: 10.1002/esp.3489.
  • Kartini G. A. J., Gumilar I., Abidin H. Z., Yondri L., 2022. The Comparison of Different LIDAR Acquisition Software on Ipad Prom1 2021. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 48: 117–120. DOI: 10.5194/isprs-archives-XLVIII-2-W1-2022-117-2022.
  • Kicińska D., Hercman H., Najdek K., 2017. Evolution of the Bystrej Valley caves (Tatra Mts, Poland) based on corrosive forms, clastic deposits and U-series speleothem dating. Annales Societatis Geologorum Poloniae 87(1): 101–119. DOI: 10.14241/asgp.2017.007.
  • Konsolaki A., Vassilakis E., Gouliotis L., Kontostavlos G.,Giannopoulos V., 2020. High resolution digital 3D modelling of subsurface morphological structures of Koutouki Cave, Greece. Acta Carsologica 49(2–3): 163-177. DOI: 10.3986/ac.v49i2-3.7708.
  • Kotański Z., 1959. Profile stratygraficzne serii wierchowej Tatr Polskich. Instytut Geologiczny, Biuletyn 139: 1–160.
  • Lefeld J., Gaździcki A., Iwanow A., Krajewski K., Wójcik K., 1985. Jurassic and Cretaceous lithostratigraphic units of the Tatra Mountains. Studia Geologica Polonica 84: 1–93.
  • Luetzenburg G., Kroon A., Bjørk A.A., 2021. Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences.Scientific Reports 11(1): 22221. DOI: 10.1038/s41598-021-01763-9.
  • Mikita T., Krausková D., Hrůza P., Cibulka M., Patočka Z., 2022. Forest road wearing course damage assessment possibilities with different types of laser scanning methods including new iPhone LiDAR scanning apps. Forests 13(11): 1763. DOI: 10.3390/f13111763.
  • Mokroš M., Mikita T., Singh A., Tomaštík J., Chudá J., Wężyk P., Kuželka K., Surový P., Klimánek M., Zięba-Kulawik K.,Bobrowski R., 2021. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation 104: 102512. DOI: 10.1016/j.jag.2021.102512.
  • Palmer A.N., 2007. Cave Geology. Cave Books.
  • PIG [Państwowy Instytut Geologiczny], 2023. Jaskinie Polski. Online: jaskiniepolski.pgi.gov.pl/ – 22.03.2023.
  • Pukanská K., Bartoš K., Bella P., Gašinec J., Blistan P., Kovanič Ľ., 2020. Surveying and high-resolution topography of the ochtiná aragonite cave based on tls and digital photogrammetry. Applied Sciences 10(13): 4633. DOI: 10.3390/app10134633.
  • Rudnicki J., 1958. Geneza jaskiń system Lodowego Źródła i ich związek z rozwojem Doliny Kościeliskiej. Acta Geologica Polonica 8(2): 245–274.
  • Rudnicki J., 1960. Geneza zagłębień wirowych w świetle badań eksperymentalnych. Speleologia 2(1): 51–55.
  • Rudnicki J., 1967. Geneza i wiek jaskiń Tatr Zachodnich. Acta Geologica Polonica 17(4): 521–592.
  • Slabe T., 1995. Cave rocky relief and its speleogenetical significance. Založba ZRC 10. DOI: 10.3986/961618203X.
  • Tatsumi S., Yamaguchi K., Furuya N., 2022. ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods in Ecology and Evolution 14(7): 1603–1609. DOI: 10.1111/2041-210X.13900.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f0b7d18-b17d-480f-8eea-fc66fc3537b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.