Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Theoretical investigations are carried out to examine the geometrical structure and parameters of electron transitions to the lowest excited states of two boronic acid derivatives: 3-aminophenylboronic acid and 3-(acetamidomethyl)phenyl boronic acid and its cycling esters with fructose, using the DFT based 6-31 G(d,p) method. The most stable ester isomer of each acid has been selected. Predicted excitation wavelength are shorter (less than 0.5 eV) than experimental ones, what is in a good agreement considering limitations of the DFT method. In case of almost every calculated molecule the analysis of electronic transitions shows that transition S0→S1 involves electron transfer mainly from the HOMO to LUMO orbital.
Czasopismo
Rocznik
Tom
Strony
29--39
Opis fizyczny
Bibliogr. 23 poz., il. kolor.
Twórcy
autor
- Institute of General Food Chemistry, Lodz University of Technology, 90-924 Lodz, ul. Stefanowskiego 4/10, Poland
autor
- Institute of General Food Chemistry, Lodz University of Technology, 90-924 Lodz, ul. Stefanowskiego 4/10, Poland
autor
- Institute of General Food Chemistry, Lodz University of Technology, 90-924 Lodz, ul. Stefanowskiego 4/10, Poland
Bibliografia
- 1. DiCesare N, Adhikari D, Heynekamp J, Heagy M, Lakowicz JR. Spectroscopic and photophysical characterization of fluorescent chemosensors for monosaccharides based on N-phenylboronic acid derivatives of 1,8-Naphthalimide. J. Fluoresc 2002 12:147-154.
- 2. Zhang Y, He Z, Li G. A novel fluorescent vesicular sensor for saccharides based on boronic acid-diol interaction. Talanta 2010 81:581-596.
- 3. Mulla H, Agard N, Basu A. 3-methoxycarbonyl-5-nitrophenyl boronic acid: high affinity diol recognition at neutral pH. Bioorg Med Chem Lett 2004 14:25-27.
- 4. Kur K, Przybyt M, Miller E. Study of 3-aminophenylboronic acid interactions with selected sugars by optical methods. J. Lumin 2017 183:485-493.
- 5. Hansen J, Christensen J, Petersen J, Hoeg-Jensen T, Norrild J. Arylboronic acids: A diabetic eye on glucose sensing. Sens Actuators B-Chem 2012 161:45-79.
- 6. Bull S, Davidson M, Van den Elsen J, Fossey J, Jentkins AT, Jiang YB, Kubo Y,. Marken F, Sakurai K, Zhao J, James TD. Exploiting the reversible covalent bonding of boronic acid: recognition, sensing, and assembly. Acc Chem Res 2013 46:312-326.
- 7. Miron C, Petitjean A. Sugar recognition: designing artificial receptors for applications in biological diagnostics and imaging. ChemBioChem 2015 16:365-379.
- 8. Gifford R. Continuous glucose monitoring: 40 years, what we’ve learned and what’s next. ChemPhysChem 2013 14:2032-2044.
- 9. Heo Y, Takeuchi S. Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Adv Healthc Mater 2013 2:43-56.
- 10. Ward Ch, Patel P, James TD. Boronic acid appended azo dyes-color sensors for saccharides. J. Chem Soc Perkin Trans 1 2002 462-470.
- 11. Arimori S, Bell M, Oh Ch, Frimat K, James TD. Modular fluorescence sensor for saccharides. J. Chem Soc Perkin Trans 1 2002 803-808.
- 12. Springsteen G, Wang B. A detailed examination of boronic acid-diol complexation. Tetrahedron 2002 58:5291-5300.
- 13. Gao X, Zhang Y, Wang B. New boronic acid fluorescent reporter compounds. 2. A naphthalene-based on-off sensor functional at physiological pH. Org Lett 2003 5:4615-4618.
- 14. Yan J, Springsteen G, Deeter S, Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acid and diols-it is not as simple as it appears. Tetrahedron 2004 60:11205-11209.
- 15. Guo Z, Shin I, Yoon J. Recognition and sensing of various species using boronic acid derivatives. Chem Commun 2012 48:5956-5967.
- 16. Wang Z, Lei H, Zhou Ch, Liang F, Feng L. Optical probe for D-glucose based on cationic polymer quencher/receptor and onionic dye in aqueous solution. Sens Actuators B-Chem 2012 163:202-206.
- 17. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian Inc. Wallingford CT, 2009.
- 18. Dennington R, Keith T, Millam J, GaussView. Version 5, Semichem Inc. Shawnee Mission KS, 2009.
- 19. Patil S, Muddapur G, Patil N, Melavanki R, Kusanur R. Fluorescence characteristics of aryl boronic acid derivatives (PBA). Spectrochim Acta A 2015 138:85-91.
- 20. Muddapur G, Patil N, Patil S, Melavanki R, Kusanur R. Estimation of ground and excited state dipole moments or aryl boronic acid derivative by solvatochromic shift method. J. Fluoresc 2014 24:1651-1659.
- 21. Sert Y, Ucun F, Böyükata M. Vibrational spectroscopic studies of 3-hydroxyphenylboronic acid: molecular structure. Indian J. Phys 2013 87:113-119.
- 22. Dreuw A, Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 2005 105:4009-4037.
- 23. Angyal J. The composition of reducing sugars in solution: current aspects. Adv Carbohydr Chem Biochem 1991 49:19-35.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f02396c-840c-4866-a4e6-5a15338b99b5