PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of interfacial debonding of metal/ceramic bimaterial using FEM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The bimaterials applied in various fields of industry consist mainly of ceramics and metal. Their damage is mainly due to the presence of residual stresses generated during their manufacture. The damaged area is closely related to the high production temperature. The aim of this study is to analyze the effect of these factors on the behavior of an interfacial and subinterfacial crack in the volume of alumina material. This behavior is studied in terms of variation of the stress intensity factor (SIF) in Modes I, II and III. A study by means of the finite element method (FEM) was carried out. This work demonstrates that the risk of sudden propagation of these cracks is all the more probable when the bimaterial is produced at high temperatures. The elastoplastic behavior of the metal considerably minimizes this risk by plasticizing the metal, which allows strong relaxation of the residual stresses.
Słowa kluczowe
Rocznik
Strony
130--134
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Laboratory Study and Research in Industrial Technology ERTI, Department of Mechanics, Faculty of Technology, University of Blida1, Algeria
  • LMPM Mechanical Engineering Department, University Sidi Bel Abbes, Algeria
autor
  • Department of Civil Engineering, University of Salerno, Italy
Bibliografia
  • [1] Saeedifar M., Saleh M.N., De Freitas S.T., Zarouchas D., Damage characterization of adhesively-bonded bi-material joints using acoustic emission, Composites Part B: Engineering 2019, 176.
  • [2] Parlevliet P.P., Bersee H.E.N., Beukers A., Residual stresses in thermoplastic composites – a study of the literature Part III: Effects of thermal residual stresses, Composites Part A: Applied Science and Manufacturing 2007, 38(6), 1581-1596.
  • [3] Bentley R.E., Handbook of Temperature Measurement: The Theory and Practice of Thermoelectric Thermometry, Springer Science & Business Media 1998, 3.
  • [4] Liu H.T., Sun L.Z., Effects of thermal residual stresses on effective elastoplastic behavior of metal matrix composites, Solids and Structures 2004, 41(8), 2189-2203.
  • [5] Aghdam M.M., Smith D.J., Pavier M.J., Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites, Mechanics and Physics of Solids 2012, 48(3), 499-528.
  • [6] Wang W., Lopes Fernandes R., Teixeira De Freitas S., Zarouchas D., Benedictus R., How pure mode I can be obtained in bi-material bonded DCB joints: A longitudinal strain-based criterion, Composites Part B 2018, 153, 137-148.
  • [7] Galli M., Cugnoni J., Botsis J., Numerical and statistical estimates of the representative volume element of elastoplastic random composites, Mechanics – A/Solids 2012, 33, 31-38.
  • [8] Mahmoodi M.J., Aghdam M.M., Shakeri M., Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading, Materials and Design 2010, 31(2), 829-836.
  • [9] Eddrief M., Aboura A., Mahmoudi N., La rupture d’un bi-materiau en presence d'une inclusion circulaire, Review of Renewable Materials and Energies 2017, 1(2).
  • [10] Daily J.S., Klingbeil N.W., Plastic dissipation energy at a bimaterial crack tip under cyclic loading, International Journal of Fatigue 2010, 32(10), 1710-1723.
  • [11] Zhang Y., Zhang J., Zheng Y., The thermal expansion behaviour of carbon fiber reinforced resin mineral composite postcured under various temperatures, Journal of Reinforced Plastics and Composites 2016, 22, 7(36).
  • [12] Desmorat R., Leckie F.A., Singularities in bi-materials: parametric study of an isotropic/anisotropic joint, European Journal of Mechanics – A/Solids 1998, 1(17), 33-52.
  • [13] Garhwal V., Chandra Kishen J.M., Correlation between fracture and damage for quasi-brittle bi-material interface cracks, Engineering Fracture Mechanics 2008, 75(8), 2208-2224.
  • [14] Hibbit, Karlsson & Sorensen, ABAQUS User’s Manual, 6.5., 2010.
  • [15] Ramdoum S., Serier B., Bouafia F., Fekirini H., Numerical analysis of crack behavior subjected to residual stresses in the metal matrix composites, Revue des Composites 2017, 3-4(27).
  • [16] Fiordalisi S., Modélisation tridimensionnelle de la fermeture induite par plasticité lors de la propagation d’une fis- sure de fatigue dans l’acier 304L. Doctoral thesis, National School of Mechanics and Aerotechnics, 2014.
  • [17] Palizvan M., Sadr M.H., Abadi M.T., A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite, World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering 2018, 11 (12).
  • [18] Lei Yang, Ying Yan, Jian Ma, Bo Liu, Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer–matrix composites, Computational Materials Science 2013, 68, 255-262.
  • [19] Maier G., Hofmann F., Performance enhancements of polymer-matrix composites by changing of residua stresses, Composites Science and Technology 2008, 68(09), 2056-2065.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f00db92-b14d-49c4-bda1-5cd0f1440b5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.