PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Rhodamine B from water by activated char obtained from end-of-life tyre pyrolysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three activated chars obtained from end-of-life tyre pyrolysis differing in activation time (AC110 – 110 min, AC130 – 130 min, and AC150 – 150 min) were successfully used as adsorbents for the removal of model dye – Rhodamine B (RhB) from aqueous solutions. The effects of solution pH, adsorption kinetics, and equilibrium adsorption were investigated. The results showed that the adsorption was strongly pH-dependent; the highest percentage of RhB dye adsorbed was obtained at pH 2.0 and the removal efficiency decreased with an increase in solution pH. Adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Weber-Morris, and Boyd kinetic models. It was found that the pseudo-second-order kinetic equation was the most appropriate for describing the adsorption kinetics and that the RhB adsorption process was controlled by a film diffusion mechanism. Adsorption equilibrium data were fitted to the Langmuir, Freundlich, Temkin, and Elovich isotherm models. The equilibrium data were best represented by the Langmuir model with the monolayer adsorption capacities of 69.96, 94.34, and 133.3 μmol/g for AC110, AC130, and AC150, respectively. It was concluded that the adsorption of RhB was closely correlated with the specific surface area (and activation time) of the activated chars.
Rocznik
Strony
art. no. e1
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry, ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry, ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Abdolrahimi N., Tadjarod A., 2019. Adsorption of Rhodamine-B from aqueous solution by activated carbon from almond shell. Proceedings, 41(1), 51. DOI: 10.3390/ecsoc-23-06619.
  • 2. Al-Ghouti M.A., Da’ana D.A., 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater., 393, 122383. DOI: 10.1016/j.jhazmat.2020.122383.
  • 3. Aylón E., Murillo R., Fernández-Colino A., Aranda A., García T., Callén M.S., Mastral A.M., 2007. Emissions from the combustion of gas-phase products at tyre pyrolysis. J. Anal. Appl. Pyrolysis, 79, 210–214. DOI: 10.1016/j.jaap.2006.10.009.
  • 4. Bello O.S., Adegoke K.A., Sarumi O.O., Lameed O.S., 2019. Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal. Heliyon, 5, e02323. DOI: 10.1016/j.heliyon.2019.e02323.
  • 5. da Silva Lacerda V., López-Sotelo J.B., Correa-Guimarães A., Hernández-Navarro S., Sánchez-Báscones M., Navas-Gracia L.M., Martín-Ramos P., Martín-Gil J., 2015. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J. Environ. Manage., 155, 67–76. DOI: 10.1016/j.jenvman.2015.03.007.
  • 6. Ding L., Zou B., Gao W., Liu Q., Wang Z., Guo Y., Wang X., Liu X., 2014. Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids Surf. A, 446, 1–7. DOI: 10.1016/j.colsurfa.2014.01.030.
  • 7. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste. OJ L 332, 28.12.2000, 91–111.
  • 8. Dutta S., Gupta B., Srivastava S.K., Gupta A.K., 2021. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater. Adv., 2, 4497–4531. DOI: 10.1039/d1ma00354b.
  • 9. ETRMA-European Tyre and Rubber Manufacturers’ Association, 2021. In Europe 95% of all End of Life Tyres were collected and treated in 2019. Available at: https://www.etrma.org/wpcontent/uploads/2021/05/20210520_ETRMA_PRESS-REL EASE_ELT-2019.pdf.
  • 10. Gad H.M.H., El-Sayed A.A., 2009. Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. J. Hazard. Mater., 168, 1070–1081. DOI: 10.1016/j.jhazmat.2009.02.155.
  • 11. Geçgel Ü., Üner O., Gökara G., Bayrak Y., 2016. Adsorption of cationic dyes on activated carbon obtained from waste Elaeagnus stone. Adsorpt. Sci. Technol., 34(9-10), 512–525. DOI: 10.1177/0263617416669727.
  • 12. Grace Pavithra K., Senthil Kumar P., Jaikumar V., Sundar Rajan P., 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem., 75, 1–19. DOI: 10.1016/j.jiec.2019.02.011.
  • 13. Guo Z., Zhang J., Liu H., 2016. Ultra-high Rhodamine B adsorp- tion capacities from an aqueous solution by activated carbon derived from Phragmites australis doped with organic acid by phosphoric acid activation. RSC Adv., 6, 40818–40827. DOI: 10.1039/c5ra25200h.
  • 14. Hamdaoui O., Naffrechoux E., 2007. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater., 147, 381–394. DOI: 10.1016/j.jhazmat.2007. 01.021.
  • 15. Hayeeye F., Sattar M., Tekasakul S., Sirichote O., 2014. Adsorption of Rhodamine B on activated carbon obtained from pericarp of rubber fruit in comparison with the commercial activated carbon. Songklanakarin J. Sci. Technol., 36(2), 177–187.
  • 16. Hoang A.T., Nguyen T.H., Nguyen H.P., 2020. Scrap tire pyrolysis as a potential strategy for waste management pathway: a review. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–18. DOI: 10.1080/15567036.2020.1745336.
  • 17. Jain R., Mathur M., Sikarwar S., Mittal A., 2007. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manage., 85, 956–964. DOI: 10.1016/j.jenvman.2006.11.002.
  • 18. Kajjumba G.W., Emik S., Öngen A., Özcan H.K., Aydın S., 2018. Modelling of adsorption kinetic processes – errors, theory and application, In: Edebali S. (Ed.), Advanced Sorption Process Applications. IntechOpen Limited, Rijeka, 1-19. DOI: 10.5772/intechopen.80495.
  • 19. Katheresan V., Kansedo J., Lau S.Y., 2018. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng., 6, 4676–4697. DOI: 10.1016/ j.jece.2018.06.060.
  • 20. Kotkowski T., Cherbański R., Molga E., 2018. Acetone adsorption on CO2-activated tyre pyrolysis char – Thermo-gravimetric analysis. Chem. Process Eng., 39, 233–246. DOI: 10.24425/122946.
  • 21. Kotkowski T.P., Cherbański R., Molga E., 2020. Tyre-derived activated carbon – textural properties and modelling of adsorption equilibrium of n-hexane. Chem. Process Eng., 41, 25–44. DOI: 10.24425/cpe.2019.130221.
  • 22. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2021a. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part I. preparation of adsorbent and adsorption from gas phase. J. Anal. Appl. Pyrolysis, 157, 105205. DOI: 10.1016/ j.jaap. 2021.105205.
  • 23. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2021b. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part II. Ad- sorption from aqueous phase. J. Anal. Appl. Pyrolysis, 158, 105206. DOI: 10.1016/j.jaap.2021.105206.
  • 24. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2020. Adsorption properties of activated tire pyrolysis chars for phenol and chlorophenols. Chem. Eng. Technol., 43, 770–780. DOI: 10.1002/ceat.201900574.
  • 25. Lee L.Z, Zaini M.A.A., 2019. Rhodamine B dyes adsorption on palm kernel shell based activated carbons. Malays. J. Fund. Appl. Sci., 15(5), 743–747.
  • 26. Lewandowski W.M., Januszewicz K., Kosakowski W., 2019. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type – A review. J. Anal. Appl. Pyrolysis, 140, 25–53. DOI: 10.1016/j.jaap.2019.03.018.
  • 27. Li L., Liu S., Zhu T., 2010. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J. Environ. Sci., 22(8), 1273–1280. DOI: 10.1016/S1001- 0742(09)60250-3.
  • 28. Machin E.B., Pedroso D.T., de Carvalho J.A., 2017. Energetic alorization of waste tires. Renewable Sustainable Energy Rev., 68, 306–315. DOI: 10.1016/j.rser.2016.09.110.
  • 29. Martínez J.D., Puy N., Murillo R., García T., Navarro M.V., Mastral A.M., 2013. Waste tyre pyrolysis – A review. Renewable Sustainable Energy Rev., 23, 179–213. DOI: 10.1016/j.rser. 2013.02.038.
  • 30. Mohammadi M., Hassani A.J., Mohamed A.R., Najafpour G.D., 2010. Removal of Rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies. J. Chem. Eng. Data, 55, 5777–5785. DOI: 10.1021/je100730a.
  • 31. Parthasarathy P., Choi H.S., Park H.C., Hwang J.G., Yoo H.S., Lee B.K., Upadhyay M., 2016. Influence of process conditions on product yield of waste tyre pyrolysis – A review. Korean J. Chem. Eng., 33, 2268–2286. DOI: 10.1007/s11814-016-0126-2.
  • 32. Quek A., Balasubramanian R., 2013. Liquefaction of waste tires by pyrolysis for oil and chemicals – A review. J. Anal. Appl. Pyrolysis, 101, 1–16. DOI: 10.1016/j.jaap.2013.02.016.
  • 33. Rangabhashiyam S., Anu N., Selvaraju N., 2013. Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. J. Environ. Chem. Eng., 1, 629–641. DOI: 10.1016/j.jece.2013.07.014.
  • 34. Rápó E., Tonk, S., 2021. Factors affecting synthetic dye adsorption; desorption studies: A review of results from the last five years (2017–2021). Molecules, 26, 5419. DOI: 10.3390/molcules26175419.
  • 35. Saleh T.A., Al-Saadi A.A., 2015. Surface characterization and sorption efficacy of tire-obtained carbon: experimental and semiempirical study of rhodamine B adsorption. Surf. Interface Anal., 2015, 47, 785–792. DOI: 10.1002/sia.5775.
  • 36. Sharma V.K., Mincarini M., Fortuna F., Cognini F., Cornacchia G., 1998. Disposal of waste tyres for energy recovery and safe environment – Review. Energy Convers. Manage., 39, 511– 528. DOI: 10.1016/S0196-8904(97)00044-7.
  • 37. Tan K.L., Hameed B.H., 2017. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng., 74, 25–48. DOI: 10.1016/j.jtice.2017.01.024.
  • 38. Üner O., Geçgel Ü., Kolancilar H., Bayrak Y., 2017. Adsorptive removal of Rhodamine B with activated carbon obtained from okra wastes. Chem. Eng. Commun., 204(7), 772–783. DOI: 10.1080/00986445.2017.1319361.
  • 39. Verschoor A.J., van Gelderen A., Hofstra U., 2021. Fate of recycled tyre granulate used on artificial turf. Environ. Sci. Eur., 33, 27. DOI: 10.1186/s12302-021-00459-1.
  • 40. Wierzbicka E., Kuśmierek K., Światkowski A., Legocka I., 2022. Efficient Rhodamine B dye removal from water by acidand organo-modified halloysites. Minerals, 12(3), 350. DOI: 10.3390/min12030350.
  • 41. Williams P.T., 2013. Pyrolysis of waste tyres: A review. Waste Manage., 33, 1714–1728. DOI: 10.1016/j.wasman.2013.05.003.
  • 42. Yagub M.T., Sen T.K., Afroze S., Ang H.M., 2014. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci., 209, 172–184. DOI: 10.1016/j.cis. 2014.04.002.
  • 43. Yu Y., Murthy B.N., Shapter J.G., Constantopoulos K.T., Voelcker N.H., Ellis A.V., 2013. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effectiv adsorbents for cationic dye removal. J. Hazard. Mater., 260, 330–338. DOI: 10.1016/j.jhazmat.2013.05.041.
  • 44. Zhang J., Zhu M., Jones I., Zhang Z., Gao J., Zhang D., 2021. Performance of activated carbons prepared from spent tyres in the adsorption of rhodamine B in aqueous solutions. Environ. Sci. Pollut. Res., 28, 52862–52872. DOI: 10.1007/s11356-021-14502-4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0efd5b8d-a2e5-44e0-aa16-33fbdfb74e5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.