PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismic imaging of a seepage gas hydrate system with a harrow‑like acquisition geometry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seepage gas hydrate systems are abundant around the world. However, it is very challenging to characterize this type of gas hydrate because the internal structure of a seepage structure is difficult to image by the conventional seismic exploration method. Here, a novel approach is proposed to achieve high-resolution seismic imaging of a seepage gas hydrate system related to a pipe structure. Raw seismic data with small-size bins are acquired with a harrow-like acquisition geometry that uses one long cable (up to 2000 m) and multiple short cables (less than 1000 m). A high-frequency GI gun is used as a source. During processing, velocity analysis and footprint attenuation are more focused. Seismic imaging resolution has been greatly improved. A small-scale carbonate layer that is hard to identify on the conventional profile is well revealed on the new profile. The new profiles also better depict the boundary and internal structure of the pipe structure. These improve our understanding of seepage gas hydrate systems. Our approach provides an important complement to conventional offshore seismic exploration.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1717--1728
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
  • Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
autor
  • Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
  • Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
autor
  • Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
  • Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
autor
  • Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
  • Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
autor
  • Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
  • Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
Bibliografia
  • 1. Berndt C, Bünz S, Clayton T et al (2004) Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Mar Pet Geol 21(6):723–733. https://doi.org/10.1016/j.marpetgeo.2004.02.003
  • 2. Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4:1206–1215
  • 3. Brookshire BN, Landers FP, Stein JA (2015) Applicability of ultra-high-resolution 3D seismic data for geohazard identification at mid-slope depths in the Gulf of Mexico: initial results. Underw Technol 32(4):271–278. https://doi.org/10.3723/ut.32.271
  • 4. Cartwright J, Santamarina C (2015) Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis. Mar Pet Geol 65:126–140. https://doi.org/10.1016/j.marpetgeo.2015.03.023
  • 5. Deng W, Liang JQ, Zhang W et al (2021) Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin, northern South China sea. Mar Petrol Geol. https://doi.org/10.1016/j.marpetgeo.2020.104810
  • 6. Etiope G, Milkov AV, Derbyshire E (2008) Did geologic emissions of methane play any role in quaternary climate change? Glob Planet Change 61(1–2):79–88
  • 7. Haacke RR, Westbrook GK, Hyndman RD (2007) Gas hydrate, fluid flow and free gas: formation of the bottom-simulating reflector. Earth Planet Sci Lett 261(3–4):407–420. https://doi.org/10.1016/j.epsl.2007.07.008
  • 8. Hampson G, Stefani J, Herkenhoff EF (2008) Acquisition using simultaneous sources: the leading edge, 27: 918–923. https://doi.org/10.1190/1.2954034
  • 9. He T, Spence GD, Wood WT, Riedel M et al (2009) Imaging a hydrate-related cold vent offshore Vancouver Island from deep-towed multichannel seismic data. Geophysics 74(2):B23. https://doi.org/10.1190/1.3072620
  • 10. He YL, Liang JQ, Kuang ZG et al (2022) Migration and accumulation characteristics of natural gas hydrates in the uplifts and their slope zones in the Qiongdongnan Basin, China. China Geol 5:234–250. https://doi.org/10.31035/cg2022004
  • 11. Hutapea FL, Tsuji T, Katou M et al (2020) Data processing and interpretation schemes for a deep-towed high-frequency seismic system for gas and hydrate exploration. J Natl Gas Sci Eng 83(August):103573. https://doi.org/10.1016/j.jngse.2020.103573
  • 12. Ker S, Le Gonidec Y, Marsset B et al (2014) Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data. Geophys J Int 196(3):1466–1470. https://doi.org/10.1093/gji/ggt497
  • 13. Kim GY, Narantsetseg B, Ryu BJ et al (2013) Fracture orientation and induced anisotropy of gas hydrate-bearing sediments in seismic chimney-like-structures of the Ulleung Basin, East Sea. Mar Pet Geol 47:182–194. https://doi.org/10.1016/j.marpetgeo.2013.06.001
  • 14. Kvenvolden KA (1993) Gas hydrates-geological perspective and global change. Rev Geophys 31:173–187
  • 15. Liang J, Zhang W, Lu JA et al (2019) Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018. Mar Geol 418(August):106042. https://doi.org/10.1016/j.margeo.2019.106042
  • 16. Liu B, Yang L, Chen JX et al (2021) Seismic diffraction analysis of a fluid escape pipe beneath the submarine gas bubble plume in the Haima cold seep area. Geofuids 2021:1–15
  • 17. Majumda UC, Shedd AE, Frye M (2016) The connection between natural gas hydrate and bottom-simulating reflectors. Geophys Res Lett 43(13):7044–7051. https://doi.org/10.1002/2016GL069443
  • 18. Marsset T, Marsset B, Ker S et al (2010) High and very high-resolution deep-towed seismic system: Performance and examples from deep water Geohazard studies. Deep Sea Res Part 1 Oceanogr Res Pap 57(4):628–637. https://doi.org/10.1016/j.dsr.2010.01.001
  • 19. Marsset B, Menut E, Ker S et al (2014) Deep-towed high-resolution multichannel seismic imaging. Deep Sea Res Part 1 Oceanogr Res Pap 93:83–90. https://doi.org/10.1016/j.dsr.2014.07.013
  • 20. Monrigal O, De Jong I, Duarte H (2017) An ultra-high-resolution 3D marine seismic system for detailed site investigation. Near Surf Geophy 15(4):335–345. https://doi.org/10.3997/1873-0604.2017025
  • 21. Petersen CJ, Bünz S, Hustoft S et al (2010) High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift. Mar Pet Geol 27(9):1981–1994. https://doi.org/10.1016/j.marpetgeo.2010.06.006
  • 22. Planke S, Eriksen FN, Berndt C et al (2009) P-Cable high-resolution seismic. Oceanography 22(1):85. https://doi.org/10.5670/oceanog.2009.09
  • 23. Plaza-Faverola A, Westbrook GK, Ker S et al (2010) Evidence from three - dimensional seismic tomography for a substantial accumulation of gas hydrate in a fluid - escape chimney in the Nyegga pockmark field, offshore Norway. J Geophys Res 115(B08104):1–24. https://doi.org/10.1029/2009JB007078
  • 24. Reagan MT, Moridis GJ (2007) Oceanic gas hydrate instability and dissociation under climate change scenarios. Geophys Res Lett 34(22):L22709
  • 25. Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168
  • 26. Seher T, Clarke R (2016) Accelerating deep water seismic acquisition through continuous recording. SEG Tech Progr Expand Abstr 35:82–86. https://doi.org/10.1190/segam2016-13531046.1
  • 27. Sha ZB, Liang JQ, Zhang GX et al (2015) A seepage gas hydrate system in northern South China Sea: seismic and well log interpretations. Mar Geol 366:69–78. https://doi.org/10.1016/j.margeo.2015.04.006
  • 28. Shipley TH (1979) Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. Am Asso Petrol Geol Bull 63(12):2204–2213. https://doi.org/10.1306/2f91890a-16ce-11d7-8645000102c1865d
  • 29. Wang XJ, Liu BR, Qian J et al (2018) Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea. J Asian Earth Sci 168:27–37. https://doi.org/10.1016/j.jseaes.2017.11.011
  • 30. Xu S, Zhang Y et al (2005) Antileakage Fourier transform for seismic data regularization. Geophysics 70(4):V87–V95
  • 31. Ye J, Wei J, Liang J et al (2019) Complex gas hydrate system in a gas chimney, South China sea. Mar Pet Geol 104:29–39
  • 32. Zhang W, Liang JQ, Lu JA et al (2020) Characteristics and controlling mechanism of typical leakage gas hydrate reservoir forming system in the Qiongdongnan Basin, northern South China Sea. Natl Gas Ind 40(08):90–99
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ef596e7-f2ad-4104-9472-283463871ae1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.