PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hospitalization patient forecasting based on multi-task deep learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forecasting the number of hospitalization patients is important for hospital management. The number of hospitalization patients depends on three types of patients, namely, admission patients, discharged patients, and inpatients. However, previous works focused on one type of patients rather than the three types of patients together. In this paper, we propose a multi-task forecasting model to forecast the three types of patients simultaneously. We integrate three neural network modules into a unified model for forecasting. Besides, we extract date features of admission and discharged patient flows to improve forecasting accuracy. The algorithm is trained and evaluated on a real-world data set of a one-year daily observation of patient numbers in a hospital. We compare the performance of our model with eight baselines over two real-word data sets. The experimental results show that our approach outperforms other baseline algorithms significantly.
Rocznik
Strony
151--162
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Rd., 310003, Hangzhou, China
  • The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Rd., 310003, Hangzhou, China
autor
  • Research Centre for Intelligent Healthcare, Coventry University, Priory Street, CV1 5FB, Coventry, UK
  • Research Centre for Intelligent Healthcare, Coventry University, Priory Street, CV1 5FB, Coventry, UK
Bibliografia
  • [1] Bergs, J., Heerinckx, P. and Verelst, S. (2014). Knowing what to expect, forecasting monthly emergency department visits: A time-series analysis, International Emergency Nursing 22(2): 112-115.
  • [2] Bingi, K. and Prusty, B.R. (2021). Forecasting models for chaotic fractional-order oscillators using neural networks, International Journal of Applied Mathematics and Computer Science 31(3): 387-398, DOI: 10.34768/amcs-2021-0026.
  • [3] Box, G.E., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2015). Time Series Analysis: Forecasting and Control, Wiley, Hoboken.
  • [4] Chatfield, C. and Yar, M. (1988). Holt-Winters forecasting: Some practical issues, Journal of the Royal Statistical Society: Series D (The Statistician) 37(2): 129-140.
  • [5] Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system, International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785-794.
  • [6] Chen, Z.-M., Wei, X.-S., Wang, P. and Guo, Y. (2019). Multi-label image recognition with graph convolutional networks, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp. 5177-5186.
  • [7] Cheng, Y. (2019). Joint Training for Neural Machine Translation, Springer theses, Springer, Singapore, chapter “Semi-supervised learning for neural machine translation”, pp. 25-40.
  • [8] Cross, S.S., Harrison, R.F. and Kennedy, R.L. (1995). Introduction to neural networks, The Lancet 346(8982): 1075-1079.
  • [9] Dai, J., He, K. and Sun, J. (2016). Instance-aware semantic segmentation via multi-task network cascades, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 3150-3158.
  • [10] Dong, E., Du, H. and Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time, The Lancet Infectious Diseases 20(5): 533-534.
  • [11] Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V. (1997). Support vector regression machines, Advances in Neural Information Processing Systems 9: 155-161.
  • [12] Greenwood, G.W. (1997). Training multiple-layer perceptrons to recognize attractors, IEEE Transactions on Evolutionary Computation 1(4): 244-248.
  • [13] Hadavandi, E., Shavandi, H., Ghanbari, A. and Abbasian-Naghneh, S. (2012). Developing a hybrid artificial intelligence model for outpatient visits forecasting in hospitals, Applied Soft Computing 12(2): 700-711.
  • [14] Hou, C., Wu, J., Cao, B. and Fan, J. (2021). A deep-learning prediction model for imbalanced time series data forecasting, Big Data Mining and Analytics 4(4): 266-278.
  • [15] Jiang, S., Chin, K.-S. and Tsui, K.L. (2018). A universal deep learning approach for modeling the flow of patients under different severities, Computer Methods and Programs in Biomedicine 154: 191-203.
  • [16] Kingma, D.P. and Ba, J. (2014). Adam: A method for stochastic optimization, arXiv: 1412.6980.
  • [17] Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85-106, DOI: 10.34768/amcs-2021-0007.
  • [18] Ledersnaider, D.L. and Channon, B.S. (1998). Sdm95-Reducing aggregate care team costs through optimal patient placement, JONA: The Journal of Nursing Administration 28(10): 48-54.
  • [19] Li, Y., Ki, Y., Sun, N., Wu, F., Zheng, C., Sun, N. (2015). Predictive analysis of outpatient visits to a grade 3, class A hospital using ARIMA model, Proceedings of the 2014 International Symposium on Information Technology (ISIT 2014), Dalian, China, pp. 301-304.
  • [20] Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest, R News 2(3): 18-22.
  • [21] Luo, L., Luo, L., Zhang, X. and He, X. (2017). Hospital daily outpatient visits forecasting using a combinatorial model based on ARIMA and SES models, BMC Health Services Research 17(1): 1-13.
  • [22] Mackay, M. (2001). Practical experience with bed occupancy management and planning systems: An Australian view, Health Care Management Science 4(1): 47-56.
  • [23] Makridakis, S., Spiliotis, E. and Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward, PloS One 13(3): 1-26.
  • [24] Menke, N.B., Caputo, N., Fraser, R., Haber, J., Shields, C. and Menke, M.N. (2014). A retrospective analysis of the utility of an artificial neural network to predicted volume, The American Journal of Emergency Medicine 32(6): 614-617.
  • [25] Nair, V. and Hinton, G.E. (2010). Rectified linear units improve restricted Boltzmann machines, Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, pp. 807-814.
  • [26] Nassif, A.B., Shahin, I., Attili, I., Azzeh, M. and Shaalan, K. (2019). Speech recognition using deep neural networks: A systematic review, IEEE Access 7: 19143-19165.
  • [27] Neil, D., Pfeiffer, M. and Liu, S.-C. (2016). Phased LSTM: Accelerating recurrent network training for long or event-based sequences, International Conference on Neural Information Processing Systems, Barcelona, Spain, pp. 3889-3897.
  • [28] Oreshkin, B.N., Carpov, D., Chapados, N. and Bengio, Y. (2019). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, arXiv: 1905.10437.
  • [29] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S. (2019). PyTOrch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems 32: 8026-8037.
  • [30] Sanh, V., Wolf, T. and Ruder, S. (2019). A hierarchical multi-task approach for learning embeddings from semantic tasks, Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, pp. 6949-6956.
  • [31] Sun, Y., Heng, B.H., Seow, Y.T. and Seow, E. (2009). Forecasting daily attendances at an emergency department to aid resource planning, BMC Emergency Medicine 9(1): 1-9.
  • [32] Wang, Y. and Gu, J. (2014). Hybridization of support vector regression and firefly algorithm for diarrhoeal outpatient visits forecasting, IEEE International Conference on Tools with Artificial Intelligence, Limassol, Cyprus, pp. 70-74.
  • [33] Zhang, J., Zheng, Y., Sun, J. and Qi, D. (2019). Flow prediction in spatio-temporal networks based on multitask deep learning, IEEE Transactions on Knowledge and Data Engineering 32(3): 468-478.
  • [34] Zhang, Y. and Yang, Q. (2021). A survey on multi-task learning, IEEE Transactions on Knowledge & Data Engineering (034(12): 5586-5609.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ef156fa-d7a3-4b7d-9049-05277a3a343d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.