Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The coalbed methane content (CMC) is an important parameter to evaluate the degree of coalbed methane enrichment, and also an important reservoir parameter to calculate coalbed methane resources, productivity prediction and reservoir simulation. Accurately identifying the distribution of CMC is crucial to the exploration of CBM. In this study, we developed a prediction method for the CMC distribution via seismic techniques identification of key geological parameters such as structure, coal thickness and sedimentation. Firstly, the geological factors that control the generation and preservation of CBM in the study area are quantitatively characterized by using five parameters: surface (X1), residual (X2), dip (X3), coal thickness (X4) and the ratio of sand to mud (X5). Secondly, the geological parameters are extracted by seismic structure interpretation and inversion prediction technology. Thirdly, the key geological parameters of CMC are screened out by grey correlation analysis. Finally, the functional relationship of CMC and the key geological parameters is established to predict the CMC distribution. The method is applied to the CMC distribution prediction of two coal seams of a study area in the southern Qinshui Basin, China. Results show that different coal seams differ in key geological parameters of CMC, resulting in various CMC distribution laws. The CMC prediction method based on the key geological factors can effectively delineate the CBM enrichment area in the study area, providing important reference for the CBM exploration and development.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2645--2662
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Department of Earth Science & Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
autor
- Department of Earth Science & Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
autor
- Department of Earth Science & Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
autor
- Department of Earth Science & Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
autor
- School of Earth Science, East China University of Technology, Nanchang, 330013, China
autor
- Asian American Gas, Inc., Beijing, 100024, China
autor
- Asian American Gas, Inc., Beijing, 100024, China
autor
- Department of Earth Science & Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Bibliografia
- 1. Agterberg FP, Jin Y (1986) Spatial and image analysis of tectonic deformation. J Gems Gemmol 21(04):48–54
- 2. Cai Y, Liu D, Yao Y et al (2011) Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin. North China Int J Coal Geol 88:101–112
- 3. Cao LT, Chang SL, Yao YB (2019) Application of seismic sedimentology in predicating sedimentary microfacies and coalbed methane gas content. J Nat Gas Sci Eng 69(11):1029–1044
- 4. Chang SL, Liu DM, Lin YC et al (2009) Application of spectral decomposition for fine seismic structure interpretation in coalfield and gas-bearing property prediction of coal seam. J China Coal Soc 34(8):1015–1021
- 5. Chen XP, Huo QM, Lin JD et al (2013a) The relation between CBM content and the elastic parameters of CBM reservoirs: reasoning and initial probing. Chin J Geophys 56(8):2837–2848
- 6. Chen Y, Chen HD, Guan D et al (2013b) Application of seismic prediction technology in CBM enrichment area based on main control factors. Geophys Prospect Petrol 52(4):426–431
- 7. Chen GW, Dong SH, Wu HB et al (2014) Research and application of quantitative geophysics recognition in high abundance of coalbed methane rich region. Prog Geophys 29(5):2151–2156
- 8. Cheng Y, Yu Q (2011) The prevention theory of coalbed methane and its engineering implication. China University of Ming and Technology Press
- 9. Dong CL, He GM, Carnegie A et al (2006) Downhole measurement of methane content and GOR in formation fluid samples. Spe Reserv Eval Eng 9:7–13
- 10. Fu XH, Qin Y, Wang GG et al (2009) Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology. Fuel 88:2269–2277
- 11. Fu HJ, Tang DZ, Xu H et al (2016) Geological characteristics and CBM exploration potential evaluation: a case study in the middle of the southern Junggar Basin, NW China. J Nat Gas Sci Eng 30(3):557–570
- 12. Ge X, He C, Dong Z (2014) New method to calculate adsorbed gas content of coalbed based on the dynamic adsorption model. Well Logging Technol 38(6):740–744
- 13. Hu XC, Yang SQ, Zhou XH et al (2014) A quantification prediction model of coalbed methane content and its application in Pannan coalfield, Southwest China. J Nat Gas Sci Eng 21:900–906
- 14. Huo LN, Xu LG, Shao LH et al (2014) Seismic prediction technologies of CBM sweet spots and their application. Nat Gas Ind 34(8):46–52
- 15. Li S, Yao S, Han Y (2007) Using tendency analysis method to deal with geochemical data based on the surfer software. Geol Prospect 43(2):72–75 ((in Chinese))
- 16. Liu J, Chang SL, Zhang S et al (2022) Integrated seismic-geological prediction of tectonic coal via main controlling factors. Acta Geophys 69(6):007–021
- 17. Peng SP, Yunfeng G, Ruizhao Y et al (2005) Theory and application of AVO for detection of coalbed methane –a case from the Huainan coalfield. Chin J Geophys 48(6):1475–1486
- 18. Peng S, Du W, Yuan C et al (2008) Identification and forecasting of different structural coals by P-wave and S-wave from well-logging. Acta Geol Sin 82:1311–1321
- 19. Peng SP, Du WF, Yin CY et al (2014) Geophysical identification of high abundance coalbed methane rich region. J Coal Soc 39(8):1398–1403
- 20. Qin Y, Moore TA, Shen J et al (2018) Resources and geology of coalbed methane in China: a review. Int Geol Rev 60(5):777–812
- 21. Ramos A, Castagna JP (2001) Useful approximations for converted-wave AVO. Geophysics 66(6):1721–1734
- 22. Song Y, Liu SB, Zhao MJ et al (2009) Coalbed methane reservoir boundary types, main controlling factors of accumulation and accumulation area prediction. Nat Gas Ind 29(10):5–9
- 23. Song HB, An HL, Liu SX et al (2021) Main controlling geological factors of coalbed methane occurrence in south Wuxiang of Qinshui Basin and prediction of rich area. J China Coal Soc 46(12):1–14
- 25. Su XB, Lin XY, Liu SB, Zhao MJ et al (2005) Geology of coalbed methane reservoirs in the Southeast Qinshui basin of China. Int J Coal Geol 62:197–210
- 26. Tian M, Zhao YJ, Zhuansun PC (2008) Application of grey system theory in prediction of coalbed methane content. Coal Geol Explor 36(2):24–27
- 27. Wang H, Yao YB, Liu DM et al (2016) Fault-sealing capability and its impact on coalbed methane distribution in the Zhengzhuang field, southern Qinshui Basin, North China. J Nat Gas Sci Eng 28:613–625
- 28. Yan WH, Chen ZC, Ma XM et al (2012) 3D seismic interpretation of coalbed methane in Zhengzhuang Block, Qinshui Basin. Oil Geophys Prospect 47(A01):66–71
- 29. Yang SA, Ning SN, Zhang HX et al (2006) Research achievements of forecasting gas using three-dimensional seismic exploration. J China Coal Soc 31(3):334–336
- 30. Yao YB, Liu DM, Tang DZ et al (2008) A comprehensive model for evaluating coalbed methane reservoirs in China. Acta Geol Sin 82(6):1253–1270
- 31. Zhang JY, Liu DM, Cai YD et al (2017a) Geological and hydrological controls on the accumulation of coalbed methane within the No. 3 coal seam of the southern Qinshui Basin. Int J Coal Geol 182:94–111
- 32. Zhang S, Huang H, Dong Y et al (2017b) Direct estimation of the fluid properties and brittleness via elastic impedance inversion for predicting sweet spots and the fracturing area in the unconventional reservoir. J Nat Gas Sci Eng 45(2017):415–427
- 33. Zhang S, Huang H, Zhu B et al (2018) Seismic facies-controlled pre-stack simultaneous inversion of elastic and petrophysical parameters for favourable reservoir prediction. Explor Geophys 49(05):655–668
- 34. Zhao Q (2004) Geological features of the coalbed methane in China its new exploration domains. Nat Gas Ind 24(5):4–7
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ef151a9-4c9a-4ed2-bcf4-0174ae0ff999