PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Substantiation into Mass and Heat Balance for Underground Coal Gasification in Faulting Zones

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bilans masy i ciepła w podziemnym zgazowaniu węgla w strefach uskoku
Języki publikacji
EN
Abstrakty
EN
In this article, the mass and heat balance calculations of underground coal gasification process for thin coal seams in faulting zones of Lvivskyi coal basin are defined. The purpose of the research is to establish regularities of heat and mass balance changes in faulting zones influence due to usage air and oxygen-enriched blast. A comprehensive methodology that included analytical calculations is implemented in the work. The output parameters of coal gasification products for the Lvivvyhillia coal mines are detailed. The heat balance is performed on the basis of the mass balance of underground coal gasification analytical results and is described in detail. Interpretations based on the conducted research and investigation are also presented. Conclusions regarding the implementation of the offered method are made on the basis of undertaken investigations. According to conducted research the technology of underground coal gasification can be carry out in the faulting zone of stable geodynamic and tectonic activity. The obtained results with sufficient accuracy in practical application will allow consume coal reserves in the faulting zones using environmentally friendly conversion technology to obtain power and chemical generator gas, chemicals and heat.
PL
W artykule przedstawiono obliczenia bilansu masy i ciepła dla procesu podziemnego zgazowania węgla dla cienkich pokładów węgla w strefach uskokowych lwowskiego basenu węglowego. Celem badań jest określenie zmian w bilansie ciepła i masy w strefach uskoków. W pracy zastosowano kompleksową metodologię obejmującą obliczenia analityczne. Wyszczególniono parametry wyjściowe produktów zgazowania węgla w kopalni Lvivvyhillia. Bilans cieplny jest oparty na bilansie masy dla wyników analitycznych z podziemnego zgazowania węgla. Przedstawiono interpretacje oparte na prowadzonych badaniach i analizach. Wnioski dotyczące wdrożenia proponowanej metody wynikają z przeprowadzonych badań. Zgodnie z przeprowadzonymi badaniami technologię podziemnego zgazowania węgla można przeprowadzić w strefie uskoków o stabilnej aktywności geodynamicznej i tektonicznej. Uzyskane wyniki pozwalają na prognozowanie z dostateczną dokładnością wyników zastosowania zgazowania węgla w strefach uskoków dla pozyskania energii elektrycznej i gazu, chemikaliów i ciepła.
Rocznik
Strony
289--300
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., Dnipro, 49005, Ukraine
autor
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., Dnipro, 49005, Ukraine
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., Dnipro, 49005, Ukraine
autor
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., Dnipro, 49005, Ukraine
autor
  • Department of Development of Deposits and Mining, National University of Water Management and Nature Resources Use, 11 Soborna St., Rivne, 33028, Ukraine
autor
  • Department of Automation, Electrical Engineering and Computer-Integrated Technologies, National University of Water Management and Nature Resources Use, 11 Soborna St., Rivne, 33028, Ukraine
Bibliografia
  • 1. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Mining of Mineral Deposits, 203-205. https://doi.org/10.1201/b16354-37
  • 2. Wiatowski, M., Kapusta, K., Świądrowski, J., Cybulski, K., Ludwik-Pardała, M., Grabowski, J., & Stańczyk, K. (2015). Technological aspects of underground coal gasification in the Experimental “Barbara” Mine. Fuel, (159), 454-462. https://doi:10.1016/j.fuel.2015.07.001
  • 3. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Mining of Mineral Deposits, 125-132. https://doi.org/10.1201/b16354-23
  • 4. Aghalayam, P. (2010). Underground Coal Gasification: A Clean Coal Technology. Handbook of Combustion. https://doi:10.1002/9783527628148.hoc082
  • 5. Bhutto, A.W., Bazmi, A.A., & Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189-214. https://doi:10.1016/j.pecs.2012.09.004
  • 6. Proshunin, Y. E., & Poturilov, A. M. (2016). Underground gasification of coal and lignite. Coke and Chemistry, 59(10), 370-379. https://doi.org/10.3103/s1068364x16100082
  • 7. Zvyaghintsev, K.N. (1981). Trends of Development of Underground Coal Gasification in the USSR. Natural Resources Forum, 5(1), 99-107. https://doi:10.1111/j.1477-8947.1981.tb00444.x
  • 8. Lavis, S., Courtney, R., & Mostade, S. (2013). Underground coal gasification. The Coal: Towards Cleaner Production, 226-239. https://doi.org/10.1533/9780857097309.2.226
  • 9. Shafirovich, E., & Varma, A. (2009). Underground Coal Gasification: A Brief Review of Current Status. Industrial & Engineering Chemistry Research, 48(17), 7865-7875. https://doi:10.1021/ie801569r
  • 10. Sadovenko, I., Inkin, O., & Zagrytsenko, A. (2016). Theoretical and geotechnological fundamentals for the development of natural and man-made resources of coal deposits. Mining of Mineral Deposits, 10(4), 1-10. https://doi.org/10.15407/mining10.04.001
  • 11. Timoshuk, V., Tishkov, V., Inkin, O., & Sherstiuk, E. (2012). Influence of coal layers gasification on bearing rocks. Geomechanical Processes During Underground Mining, 109-113. https://doi.org/10.1201/b13157-19
  • 12. Bukowska, M., & Sygała, A. (2015). Deformation properties of sedimentary rocks in the process of underground coal gasification. Journal of Sustainable Mining, 14(3), 144-156. https://doi.org/10.1016/j.jsm.2015.11.003
  • 13. Otto, C., & Kempka, T. (2015). Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes. Energies, 8(6), 5800-5827. https://doi.org/10.3390/en8065800
  • 14. Kochura, I. V. (2012). Coal Market of Ukraine: Analysis and Development Background / Geo-Science Engineering, 58(1). https://doi.org/10.2478/gse-2014-0034
  • 15. Dychkovskyi, R.O. (2010). Mechanized coal seams extraction in faulting zones of rock massif in Lvivsko-Volynskyi coal basin conditions. Dnipropetrovsk: National Mining University, 110 p. (In Ukrainian)
  • 16. Struev, M.I., Isakov, V.I., & Shpakova, V.B. (2014). Lvivsko-Volynskyi coal basin. Geological report. Kyiv: Naukova dymka, 272 p. (In Russian)
  • 17. Shul’ga, V. F., Lukin, A. E., & Lelik, B. I. (2000). Fossil gas-seepage marks in coal-bearing sequences of the Lviv-Volyn basin. Lithology and Mineral Resources, 35(5), 493-498. https://doi.org/10.1007/bf02782735
  • 18. Shulha, P.L., Zavialova, O.A., & Pomianovska, H.M. (1979). Stratigraphy of the Carboniferous of Lvivsko-Volynskyi coal basin Ukrainian Stratigraphy. Geological Journal, (5), 314-361. (In Ukrainian)
  • 19. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Mining of Mineral Deposits, 197–201. https://doi:10.1201/b16354-36
  • 20. Majkherchik, T., Gajko, G.I., & Malkovskij, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol’, 48-54.
  • 21. Busylo, V., Savelieva, T., Serdyuk, V., Saveliev, V., & Demchenko, Yu. (2017). Study of massif stress-strain state while mining the series of flat strata. Mining of Mineral Deposits, 11(1), 80-86. https://doi.org/10.15407/mining11.01.080
  • 22. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Mining of Mineral Deposits, 45-48. https://doi.org/10.1201/b16354-10
  • 23. Chetveryk, M., Bubnova, O., & Babiy, K. (2017). The rate of deformation development in the rock massif on the basis of surveying monitoring on the earth surface. Mining of Mineral Deposits, 11(1), 57-64. https://doi.org/10.15407/mining11.01.057
  • 24. Kozel, K.K. (1990). An influence of disjunctive fault plane on mechanized complex productivity. Coal of Ukraine, (4), 16–17. (In Russian)
  • 25. Gonyk, E., & Ivanina, A. (2014). Definition of the Mississippian–Pennsylvanian Boundary in the Lviv–Volyn Coal Basin (Western Ukraine), Based on Palynological Data. STRATI 2013, 1091-1094. https://doi.org/10.1007/978-3-319-04364-7_208
  • 26. Ivanova, A., & Zaitseva, L. (2004). Studies of the coal facies in Western Ukraine (the Lvov-Volyn basin). International Journal of Coal Geology, 58(1-2), 67–73. https://doi.org/10.1016/j.coal.2003.08.007
  • 27. Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Revisiting possibility to cross the disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22–27.
  • 28. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological fault on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21–29.
  • 29. Falshtynskyy, V., Dychkovskyy, R., Lozynskyy, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. School of Underground Mining 2012, 201-208. https://doi.org/10.1201/b13157-35
  • 30. Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.G., & Saik, P.B. (2013). Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams. Journal of Sustainable Mining, 12(3), 8-16. https://doi.org/10.7424/jsm130302
  • 31. Lavrov, N.V. (1957). Physical and chemical basis of combustion and gasification of fuel. Мoskov: Metallizdat, 40. (In Russian)
  • 32. Yanchenko, G.A. (1988). Thermal balance of the underground coal gasification process. Moskov: MGI, 42. (In Russian)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ef0558a-1e6e-48a3-a1e3-8d2d714c9225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.