PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the engineering design of guide vane and runner blades of hydraulic turbines using the inverse problem on the basis of the definition of a velocity hodograph, which is based on Wu’s theory [1, 2]. The design concerns the low-head double-regulated axial Kaplan turbine model characterized by a very high specific speed. The three-dimensional surfaces of turbine blades are based on meridional geometry that is determined in advance and, additionally, the distribution of streamlines must also be defined. The principles of the method applied for the hydraulic turbine and related to its conservation equations are also presented. The conservation equations are written in a curvilinear coordinate system, which adjusts to streamlines by means of the Christoffel symbols. This leads to significant simplification of the computations and generates fast results of three-dimensional blade surfaces. Then, the solution can be found using the method of characteristics. To assess usefulness of the design and robustness of the method, numerical and experimental investigations in a wide range of operations were carried out. Afterwards, the so-called shell characteristics were determined by means of experiments, which allowed to evaluate the method for application to the low-head (1.5 m) Kaplan hydraulic turbine model with the kinematic specific speed (»260). The numerical and experimental results show the successful usage of the method and it can be concluded that it will be useful in designing other types of Kaplan and Francis turbine blades with different specific speeds.
Rocznik
Strony
1133--1147
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, J. Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] C.H. Wu, “A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types”, NACA Technical Note 2604, 1952.
  • [2] C.H. Wu, “A general theory of two- and three-dimensional rotational flow in subsonic and transonic turbomachines”, NASA Contractor Report 4496, 1993.
  • [3] W.R. Hawthorne, C. Wang, C.S. Tan, and J.E. McCune, “Theory of blade design for large deflections – Part 1: two-dimensional cascade”, ASME J. Eng. Gas Turbines Power 106(2), 346–353 (1984).
  • [4] C.S. Tan, W.R. Hawthorne, J.E. McCune, and C. Wang, “Theory of blade design for large deflections – Part 2: annular cascades”, ASME J. Eng. Gas Turbines Power 106(2), 354–365 (1984).
  • [5] M. Zangeneh, “A compressible three dimensional blade design method for radial and mixed flow turbomachinery blades”, Int. J. Numer. Methods Fluids 13(5), 599–624 (1991).
  • [6] M. Zangeneh, “Inverse design of centrifugal compressor vaned diffusers in inlet shear flows”, ASME J. Turbomach. 118(2), 385–393 (1996).
  • [7] A. Demeulenaere and R.A. van den Braembussche, “Three-dimensional inverse method for turbomachinery blading design”, ASME J. Turbomach. 120(2), 247–255 (1996).
  • [8] L. de Vito, R.A. van den Braembussche, and H. Deconinck, “A novel two-dimensional viscous inverse design method for turbomachinery blading”, ASME J. Turbomach. 125(2), 310–316 (2003).
  • [9] A. Goto and M. Zangeneh, “Hydrodynamic design of pump diffuser using inverse design method and CFD”, ASME J. Fluids Engineering 124(2), 319–328 (2002).
  • [10] A. Goto, M. Nohmi, T. Sakurai, and Y. Sogawa, “Hydrodynamic design system of for pumps based on 3-D CAD, CFD, and inverse design method”, ASME J. Fluids Engineering 124(2), 329–335 (2002).
  • [11] S. Cao, G. Peng, and Z. Yu, “Hydrodynamic design of roto-dynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis”, ASME J. Fluids Engineering 127(2), 330–338 (2005).
  • [12] G. Peng, “A practical combined computation method of mean through-f low for 3D inverse design of hydraulic turbomachinery blades”, ASME J. Fluids Engineering 127(6 ), 1183 –119 0 (2005).
  • [13] R.H. Zhang, R. Guo, J.H. Yang, and J.Q. Luo. “Inverse method of centrifugal pump impeller based on proper orthogonal decom-position (POD) method”, Chin. J. Mech. Eng. 30(4), 1025–1031 (2017).
  • [14] L. Yeming, X.F. Wang, W. Wang, and F.M. Zhou, “Application of the modified inverse design method in the optimization of the runner blade of a mixed-flow pump”, Chin. J. Mech. Eng.31(1), 105–121 (2018).
  • [15] G. Peng, S. Cao, M. Ishizuka, and S. Hayama, “Design optimization of axial flow hydraulic turbine runner: Part I – an improved Q3D inverse method”, Int. J. for Numerical Methods in Fluids39(6), 517–531 (2002).
  • [16] G. Peng, S. Cao, M. Ishizuka, and S. Hayama, “Design optimiza-tion of axial flow hydraulic turbine runner: Part II – multi-object constrained optimization method”, Int. J. for Numerical Methods in Fluids 39(6), 533–548 (2002).
  • [17] M. Zangeneh, A. Goto, and T. Takemura, “Suppression of secondary flows in a mixed flow pump impeller by application of 3D inverse design method: Part 1 – design and numerical validation”, ASME J. Turbomach. 118(3), 536–543 (1996).
  • [18] K. Daneshkah and M. Zangeneh, “Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method”, IOP Conf. Series: Earth and Environmental Science12, 012058 (2010).
  • [19] H. Okamoto and A. Goto, “Suppression of cavitation in a Francis turbine runner by application of 3D inverse design method”. ASME Joint U.S.-European Fluids Engineering Division Conference, paper no. 31192, 851–858 (2002).
  • [20] D. Bonaiuti, M. Zangeneh, R. Aartojarvi, and J. Eriksson, “Para-metric design of a waterjet pump by means of inverse design. CFD calculations and experimental analyses”, ASME J. Fluids Engineering, 132(3), 031104 (2010).
  • [21] J.E. Borges, “A three-dimensional inverse method for turbomachinery – Part 1: theory”, J. Turbomach. 112(3), 346–354 (1990).
  • [22] J. Jiang and T. Dang, “Design method for turbomachine blades with finite thickness by the circulation method”, J. Turbomach.119(3), 539–543 (1997).
  • [23] J.C. Pascoa, A.C. Mendes, and L.M.C. Gato, “A fast iterative inverse method for turbomachinery blade design”, Mech. Res. Commun. 36(5), 630–637 (2009).
  • [24] N.P. Kruyt and R.W. Westra, “On the inverse problem of blade design for centrifugal pumps and fans”, Inverse Problems 30(6), 065003 (2014).
  • [25] X. Qiu, M. Ji, and T. Dang, “Three-dimensional viscous inverse method for axial blade design”, Inverse Problems Sci. Eng.17(8), 1019–1036 (2009).
  • [26] K. Daneshkhah and W. Ghaly, “An inverse blade design meth-od for subsonic and transonic viscous flow in compressors and turbines”, Inverse Problems Sci. Eng. 14(3), 211–231 (2006).
  • [27] https://en.wikipedia.org/wiki/Christoffel_symbols.
  • [28] R. Puzyrewski, “Podstawy teorii maszyn wirnikowych w ujęciu jednowymiarowym (Basic Theory of Rotating Machinery in Terms of 1D Model)”, the Ossolinskis Publisher, Wroclaw--Warszawa-Krakow, ISBN 83‒04‒03829‒3, 1992, [in Polish].
  • [29] R. Puzyrewski and Z. Krzemianowski, “Two concepts of guide vane profile design for a low head hydraulic turbine”, Journal of Mechanics Engineering and Automation 5(4), 201–209 (2015).
  • [30] R. Puzyrewski and Z. Krzemianowski, “2D model of guide vane for low head hydraulic turbine. Analytical and numerical solution of inverse problem”, Journal of Mechanics Engineering and Automation 4(3), 195–202 (2014).
  • [31] W. Krzyżanowski, “Turbiny wodne. Konstrukcja i zasady regulacji (Hydraulic turbines. Construction and regulation)”, WNT Publisher, Warsaw, Poland, 1971, [in Polish].
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eeb3771-49d4-4f6c-80ca-a4bec3cd00d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.