Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A difficulty of freeform surfaces evaluations lies in a setup of a coordinate measuring system in general, when it is not possible to use the standard system of alignment by a point, a line, and a surface. An algorithm for the measurement adjustment using a small workpiece coordinate system movement and rotation to achieve a smaller least square error of the produced surface for a given freeform surface defined by the function of two variables is considered. The algorithm uses the Newton method for calculation of the orthogonal distance of a measured point to a given surface and also for minimization of the sum of the distance squares. Numerical results for an example are given.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
223--232
Opis fizyczny
Bibliogr. 19 poz., fig.
Twórcy
autor
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00, Košice, Slovak Republic
autor
- Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00, Košice, Slovak Republic
autor
- Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00, Košice, Slovak Republic
autor
- Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00, Košice, Slovak Republic
autor
- Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00, Košice, Slovak Republic
autor
- VŠB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava – Poruba, Czech Republic
Bibliografia
- 1.Ohara M., Higashi M. Integration of CAD/CAM systems in automotive body engineering. Computers & Graphics, 7 (3–4), 1983, 307–311, 313–314.
- 2.Mehrad V., Xue D., Gu P., Prediction of surface reconstruction uncertainties for freeform surface inspection. Measurement, 46 (8), 2013, 2682–2694.
- 3.Sitnik R., Błaszczyk P. M. Segmentation of unsorted cloud of points data from full field optical measurement for metrological validation. Computers in Industry, 63 (1), 2012, 30–44.
- 4.Oe T., Shizuki B., Tanaka J. Scan modeling: 3D modeling techniques using cross section of a shape. Proc. of 10th Asia Pacific Conference on Computer Human Interaction, New York, USA 2012, 243–250.
- 5.Kruth J.-P., Kerstens A. Reverse engineering modelling of freeform surfaces from point clouds subject to boundary conditions. Journal of Materials Processing Technology, 76 (1–3), 1998, 120–127.
- 6.Wu N., Yang C., Guo R., Zhang Z., Zhou C., Chen W., Tao L. Reverse Design and Manufacture of the Car Door Using Reverse Engineering Methods. American Society of Civil Engineers, 2011, ch. 384, 3849–3854.
- 7.Ochiai Y., Sekiya T. Generation of free-form surface in CAD for dies. Advances in Engineering Software, 22 (2), 1995, 113–118.
- 8.Lo C.-C. CNC machine tool surface interpolator for ball-end milling of free-form surfaces. International Journal of Machine Tools and Manufacture, 40 (3), 2000, 307–326.
- 9.Wei E.-J., Lin M.-C. Study on general analytical method for CNC machining the free-form surfaces. Journal of Materials Processing Technology, 168 (3), 2005, 408–413.
- 10.Sacharow A., Odendahl S., Peuker A., Biermann D., Surmann T., Zabel A. Iterative, simulation-based shape modification by free-form deformation of the NC programs. Advances in Engineering Software, 56 (2013), 63–71.
- 11.Zhang A. M., Fang D. Y., Qiu Y. Research and practice on new measuring and drafting mode of mechanical drawing based on reverse engineering. Measurement Technology and its Application: Applied Mechanics and Materials, 239, 2013, 645–648.
- 12.Lee R.-T., Shiou F.-J. Multi-beam laser probe for measuring position and orientation of freeform surface. Measurement, 44 (1), 2011, 1–10.
- 13.Kale K. B., Gurumoorthy B. Profile tolerance verification for free-form surfaces using medial axis transform. Proc. of 12th CIRP Conference on Computer Aided Tolerancing, 2013, 133–141.
- 14.Wait R. The Numerical Solution of Algebraic Equations. John Wiley & Sons, 1979.
- 15.Nocedal J., Wright S. Numerical optimization. Springer-Verlag, 1999.
- 16.Bunday B. D. Basic Optimisation Methods. Edward Arnold, 1984.
- 17.Higham N. J. Optimization by direct search in matrix computations. SIAM Journal on Matrix Analysis and Applications, 14 (2), 1993, 317–333.
- 18.Kelley C. T. Iterative Methods for Optimization. Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, 1999.
- 19.Molnár V., Fedorko G., Stehlíková B., Michalik P., Kopas M. Mathematical models for indirect measurement of contact forces in hexagonal idler housing of pipe conveyor. Meas. J. Int. Meas. Confed., 47, 2014, 794–803.
- 20.Debski H., Teter A., Kubiak T., Samborski S. Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Compos. Struct., 136, 2016.
- 21.Garbacz T., Jachowicz T., Gajdoš I., Kijewski G. Research on the influence of blowing agent on selected properties of extruded cellular products. Adv. Sci. Technol. Res. J. 28 (9), 2015, 81-88.
- 22.Kráľ J.jr, Kráľ J. Verification of a three axis milling machine accuracy in the process of complex shaped part production. Applied Mechanics and Materials: Novel Trends in Production Devices and Systems. 474, 2014, 261-266.
- 23.Fedorko G., Kráľ J.jr, Kráľ J., Ristovic I., Molnár V. Determination of calculation for the shape of blades trace in the concrete mixer truck. Procedia Technology, 19, 2015, 395–401.
- 24.Kulka J., Mantic M., Fedorko G., Molnár V. Analysis of crane track degradation due to operation. Engineering Failure Analysis, 59, 2016, 384–395.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0edd032e-b29e-447c-8711-c8e4d0ed0874