PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materiały polimerowe wykorzystywane w metodzie selektywnego spiekania laserowego : praca przeglądowa

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Polymer materials for selective laser sintering : current state of the art
Języki publikacji
PL
Abstrakty
PL
W artykule pokazano fundamentalne informacje na temat jednej z głównych technik wytwarzania przyrostowego, czyli metody selektywnego spiekania laserowego (SLS). Opisano rodzaje czynników i ich wpływ na jakość uzyskiwanych tą metodą modeli. Przedstawiono wymagania stawiane materiałom polimerowym wykorzystywanym w technice SLS oraz dokonano przeglądu literatury z ostatnich lat, dotyczącej nowych materiałów dedykowanych metodzie SLS.
EN
In the article, the fundamental information about one of the main techniques for incremental methods of production, that is, selective laser sintering (SLS) was described. Pointed out the types of factors and their influence on the quality of obtained by this method models. The requirements for polymer materials used in SLS technology were introduced and discussed. A review of the literature in recent years, concerning new, dedicated SLS method materials was presented.
Rocznik
Strony
7--16
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Katedra Chemii i Fotochemii Polimerów, ul. Gagarina 7, 87-100 Toruń
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Katedra Chemii i Fotochemii Polimerów, ul. Gagarina 7, 87-100 Toruń
Bibliografia
  • 1. Lü L., Fuh J.Y.H., Wong Y.S.: Laser-Induced Materials and Processes for Rapid Prototyping, Springer Science & Business Media, LLC, New York 2001, Rozdział 5.
  • 2. Siemiński P., Budzik G.: Techniki przyrostowe. Druk 3D. Drukarki 3D. OWPW, Warszawa 2015.
  • 3. Franco A., Lanzetta M., Romoli L.: Experimental analysis of selective laser sintering of polyamide powders: an energy perspective. Journal of Cleaner Production 2010, nr 18, s. 1722-1730.
  • 4. Sasimowski E.: Przyrostowe metody wytwarzania elementów z tworzyw sztucznych. Przetwórstwo Tworzyw 2015, nr 4, s. 349-354.
  • 5. Praca zbiorowa pod red. Chlebusa E.: Innowacyjne technologie Rapid Prototyping - Rapid Tooling w rozwoju produktu. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2003.
  • 6. Kaziunas France A.: Świat druku 3D. Przewodnik. Kompendium wiedzy o druku 3D! Wydawnictwo Helion, Gliwice 2014.
  • 7. Lii L. i inni: Laser-induced materials and processes for rapid prototyping. Springer Science + Business Media, New York 2001, Chapter 5.
  • 8. Kumar N., Kumar H., Khurmi J. S.: Experimental Investigation of process parameters for rapid prototyping technique (Selective Laser Sintering) to enhance the part quality of prototype by Taguchi method. Procedia Technology 2016, nr 23, s. 352-360.
  • 9. Guan G. i inni: Evaluation of selective laser sintering processes by optical coherence tomography. Materials and Design 2015, nr 88, s. 837-846.
  • 10. Zhu W. i inni: Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts. Materials and Design 2015, nr 82, s. 37-45.
  • 11. Schmida M., Amado A., Wegener K.: Materials perspective of polymers for additive manufacturing with selective laser sintering. Journal of Materials Research 2014, vol. 29, nr 17, s. 1824-1832.
  • 12. Peyre P. i inni: Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. Journal of Materials Processing Technology 2015, nr 225, s. 326-336.
  • 13. Berretta S., Ghita O., Evans K. E.: Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders. European Polymer Journal 2014, nr 59, s. 218-229.
  • 14. Pham D. T., Dotchev K. D., Yusoff W. A. Y.: Deterioration of polyamide powder properties in the laser sintering process. Journal of Mechanical Engineering Science 2008, nr 222, s. 2163-2176.
  • 15. Salazar A. i inni: Monotonic loading and fatigue response of a bio-based polyamide PA11 and a petrol-based polyamide PA12 manufactured by selective laser sintering. European Polymer Journal 2014, nr 59, s. 36-45.
  • 16. Hooreweder B. V.: On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering. Polymer Testing 2013, nr 32, s. 972-981.
  • 17. Goodridge R. D., Tuck C. J., Hague R. J. M.: Laser sintering of polyamides and other polymers. Progress in Materials Science 2012, nr 57, s. 229-267.
  • 18. Kim J., Creasy T. S.: Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite. Polymer Testing 2004, nr 23, s. 629-636.
  • 19. Chunga H., Das S.: Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Materials Science and Engineering A 2008, nr 487, s. 251-257.
  • 20. Salmoria G. V. i inni: Rapid manufacturing of PA/HDPE blend specimens by selective laser sintering: Microstructural characterization. Polymer Testing 2007, nr 26, s. 361-368.
  • 21. Salmoria G.V. i inni: Selective laser sintering of PA12/HDPE blends: effect of components on elastic/plastic behavior, Polymer Testing 2008, nr 27, s. 654-659.
  • 22. Yan C. i inni: Preparation, characterization and processing of carbon fibre/polyamide-12 composites for selective laser sintering. Composites Science and Technology 2011, nr 71, s. 1834-1841.
  • 23. Jansson A., Pejry L.: Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering. Additive Manufacturing 2016, nr 9, s. 7-13.
  • 24. Bai J. i inni: Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes. Polymer Engineering & Science 2013, nr 53, s. 1937-1946.
  • 25. Schmidt M., Pohle D., Rechtenwald T.: Selective Laser Sintering of PEEK . Annals of the CIRP 2007, vol. 56, nr 1, s. 205-208.
  • 26. Ghita O. i inni: High Temperature Laser Sintering (HT-LS): An investigation into mechanical properties and shrinkage characteristics of Poly-(Ether Ketone) (PEK) structures. Materials & Design 2014, nr 61, s. 124-132.
  • 27. Tan K. H. i inni: Scaffold development usingselective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 2003, nr 24, s. 3115-3123.
  • 28. Chua C. K. i inni: 3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry. Virtual and Physical Prototyping 2016, vol. 11, nr 3, s. 151-158.
  • 29. Hao L. i inni: Effects of material morphology and processing conditions on the characteristics of hydroxyapatite and high-density polyethylene biocomposites by selective laser sintering. Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials Design and Applications 2006, nr 220, s. 125-137.
  • 30. Goodridge R. D, Hague R. J. M., Tuck C. J.: An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE). Journal of Materials Processing Technology 2010, nr 210, s. 72-80.
  • 31. Bai J. i inni: The effect of processing conditions on the mechanical properties of polyethylene produced by selective laser sintering. Polymer Testing 2016, nr 52, s. 89-93.
  • 32. Shi Y. i inni: Study of the selective laser sintering of polycarbonate and postprocess for parts reinforcement. Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials Design and Applications 2007, vol. 221m nr 1, s. 37-42.
  • 33. Berzins M., Childs T.H.C., Ryder G.R.: The Selective Laser Sintering of Polycarbonate. CIRP Annals - Manufacturing Technology 1996, vol. 45, nr 1, s. 187-190.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ed1d852-0843-4c99-8417-9b698dc078f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.