Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background and objective: With increase in prevalence of lower back pain, fast and reliable computer aided methods for clinical diagnosis associated with the same is needed for improving the healthcare reach. The magnetic resonance images exhibit a change in signal intensity on the vertebral body close to end plates, which are termed as Modic changes (MC), and are known to be clear indicators of lower back pain. The current work deals with computer aided methods for automating the classification of signal changes between normal and degenerate cases so as to aid physicians in precise and suitable diagnosis for the ailment. Methods: In order to detect Modic changes in vertebrae, initially the vertebrae are segmented from sagittal MR T1 and T2 imaged using a semi automatic cellular automata based segmentation. This is followed by textural feature extraction using Local Binary Patterns (LBP) and its variants. Various classifiers based on machine learning approaches using Random Forest, kNN, Bayes and SVM were evaluated for its classification performance. Since medical image dataset in general have bias towards healthy and diseased state, data augmentation techniques were also employed. Results: The implemented method is tested and validated over a dataset containing 100 patients. The proposed framework achieves an accuracy of 81% and 91.7% with and without augmentation of data respectively. A comparative study with the state of art methods reported in literature shows that the method proposed in better in terms of computational cost without any compromise on classification accuracy. Conclusion: A novel approach to identify MC in vertebrae by exploiting textural features is proposed. This shall assist radiologists in detecting abnormalities and in treatment planning.
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--29
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- 3D Imaging and Additive Manufacturing Lab, Department of Engineering Design, IIT – Madras, Chennai, Tamil Nadu, India
- Department of Engineering Design, Indian Institute of Technology, Madras, Room No. 418, Chennai 600036, Tamil Nadu, India; http://ed.iitm.ac.in/gsaravana/
autor
- Department of Radiology, Apollo Specialty Hospitals, Chennai, Tamil Nadu, India
Bibliografia
- [1] Hanrahan CJ, Shah LM. MRI of spinal bone marrow: Part 2, T1-weighted imaging-based differential diagnosis. Am J Roentgenol 2011;197:1309–21. http://dx.doi.org/10.2214/AJR.11.7420.
- [2] Ract I, Meadeb JM, Mercy G, Cueff F, Husson JL, Guillin R. A review of the value of MRI signs in low back pain. Diagn Interv Imaging 2015;96:239–49. http://dx.doi.org/10.1016/j.diii.2014.02.019.
- [3] Dougherty G. Digital image processing for medical applications; 2009.
- [4] Albert HB, Kjaer P, Jensen TS, Sorensen JS, Bendix T, Manniche C. Modic changes, possible causes and relation to low back pain, Med. Hypotheses 2008;70:361–8. http://dx.doi.org/10.1016/j.mehy.2007.05.014.
- [5] Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988;166:193–9. http://dx.doi.org/10.1148/radiology.166.1.3336678.
- [6] Zhang YH, Zhao CQ, Jiang LS, Chen XD, Dai LY. Modic changes: a systematic review of the literature. Eur Spine J 2008;17:1289–99. http://dx.doi.org/10.1007/s00586-008-0758-y.
- [7] Rahme R, Moussa R. The modic vertebral endplate and marrow changes: pathologic significance and relation to low back pain and segmental instability of the lumbar spine. Am J Neuroradiol 2008;29:838–42. http://dx.doi.org/10.3174/ajnr.A0925.
- [8] Schroeder AGD, Markova DZ, Koerner JD, Rihn JA, Hilibrand AS, Vaccaro AR, et al. Are modic changes associated with intervertebral disc cytokine profiles? Spine J 2016. http://dx.doi.org/10.1016/j.spinee.2016.08.006.
- [9] Kjaer P, Korsholm L, Bendix T, Sorensen JS, Leboeuf-Yde C. Modic changes and their associations with clinical findings. Eur Spine J 2006;15:1312–9. http://dx.doi.org/10.1007/s00586-006-0185-x.
- [10] Han C, Wang T, Jiang HQ, Ma JX, Tian P, Zang JC, et al. An animal model of Modic changes by embedding autogenous nucleus pulposus inside subchondral bone of lumbar vertebrae. Sci Rep 2016;6:1–9. http://dx.doi.org/10.1038/srep35102.
- [11] Mok FPS, Samartzis D, Karppinen J, Fong DYT, Luk KDK, Cheung KMC. Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population- based cohort. Spine J 2016;16:32–41. http://dx.doi.org/10.1016/j.spinee.2015.09.060.
- [12] Hayashi T, Daubs MD, Suzuki A, Scott TP, Phan KH, Ruangchainikom M, et al. Motion characteristics and related factors of Modic changes in the lumbar spine. J Neurosurg Spine 2015;22:1–7. http://dx.doi.org/10.3171/2014.10.SPINE14496.Disclosure.
- [13] Lee JM, Nam KH, Lee IS, Park SK, Choi BK, Han IH. Modic degenerative marrow changes in the thoracic spine: a single center experience. J Korean Neurosurg Soc 2013;54:34–7. http://dx.doi.org/10.3340/jkns.2013.54.1.34.
- [14] Sheng-yun L, Letu S, Jian C, Mamuti M, Jun-hui L, Zhi S, et al. Comparison of Modic changes in the lumbar and cervical spine, in 3167 patients with and without spinal pain. PLoS ONE 2014;9:1–16. http://dx.doi.org/10.1371/journal.pone.0114993.
- [15] Dakua SP. AnnularCut: a graph-cut design for left ventricle segmentation from magnetic; 2013;1–11. http://dx.doi.org/10.1049/iet-ipr.2013.0088.
- [16] Rother C, Kolmogorov V, Blake A. ‘‘GrabCut’’: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 2004;23:309. http://dx.doi.org/10.1145/1015706.1015720.
- [17] Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 2011;20:2007–16. http://dx.doi.org/10.1109/TIP.2011.2146190.
- [18] Athertya JS, Saravana Kumar G. Automatic segmentation of vertebral contours from CT images using fuzzy corners. Comput Biol Med 2016;72:75–89. http://dx.doi.org/10.1016/j.compbiomed.2016.03.009.
- [19] Zhang K, Zhang L, Song H, Zhou W. Active contours with selective local or global segmentation: A new formulation and level set method. Image Vis Comput 2010;28:668–76. http://dx.doi.org/10.1016/j.imavis.2009.10.009.
- [20] Oktay AB, Akgul YS. Simultaneous localization of lumbar vertebrae and intervertebral discs with SVM-Based MRF. IEEE Trans Biomed Eng 2013;60:2375–83. http://dx.doi.org/10.1109/TBME.2013.2256460.
- [21] Ghosh S, Chaudhary V. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI. Comput Med Imaging Graph 2014. http://dx.doi.org/10.1016/j.compmedimag.2014.03.005.
- [22] Zukić D, Vlasák A, Dukatz T, Egger J, Horinek D, Nimsky C, et al. Segmentation of vertebral bodies in MR images. Work Vis Model Vis 2012;135–42. http://dx.doi.org/10.2312/PE/VMV/VMV12/135-142.
- [23] Chu C, Belavý DL, Armbrecht G, Bansmann M, Felsenberg D, Zheng G. Fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images via a learning-based method. PLOS ONE 2015;10:1–22. http://dx.doi.org/10.1371/journal.pone.0143327.
- [24] Sahin U, Uguz S, Akın H, Siap I. Three-state von Neumann cellular automata and pattern generation. Appl Math Model 2014;1–22. http://dx.doi.org/10.1016/j.apm.2014.10.025.
- [25] Wongthanavasu S. Cellular automata for medical image processing. Cell Autom-Innov Model Sci Eng 2008;395–410, http://www.intechopen.com/books/cellular-automata- innovative-modelling-for-science-and- engineering/cellular-automata-for-medical-image- processing%5Cnhttp://www.intechopen. com/articles/show/title/cellular-automata-for-medical-image-processing.
- [26] Beasley RA. Semiautonomous medical image segmentation using seeded cellular automaton plus edge detector. ISRN Signal Process 2012;2012:1–9. http://dx.doi.org/10.5402/2012/914232.
- [27] Frighetto-Pereira L, Menezes-Reis R, Metzner GA, Rangayyan RM, Azevedo-Marques PM, Nogueira-Barbosa MH. Shape, texture and statistical features for classification of benign and malignant vertebral compression fractures in magnetic resonance images. Comput Biol Med 2016;73:147–56. http://dx.doi.org/10.1109/CBMS.2015.37.
- [28] De Azevedo-marques PM, Menezes-reis R, Nogueira-barbosa MH, Spagnoli HF. Classification of vertebral compression fractures in magnetic resonance images using spectral and fractal analysis classification of vertebral compression fractures in magnetic resonance images using spectral and fractal analysis; 2015.
- [29] Oktay AB, Albayrak NB, Akgul YS. Computer aided diagnosis of degenerative intervertebral disc diseases from lumbar MR images. Comput Med Imaging Graph 2014;38:613–9. http://dx.doi.org/10.1016/j.compmedimag.2014.04.006.
- [30] Hu M-K. Visual pattern recognition by moment invariants. IEEE Trans Inf Theory J Opt Soc Am 1962;70.
- [31] Ghosh S, Alomari RS, Chaudhary V, Dhillon G. Composite features for automatic diagnosis of intervertebral disc herniation from lumbar MRI. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2011;5068–71. http://dx.doi.org/10.1109/IEMBS. 2011.6091255.
- [32] Amir Jamaludin AZ, Kadir T. Automatic modic changes classification in spinal MRI. LNCS 2016;1:14–26. http://dx.doi.org/10.1007/978-3-319-07269-2.
- [33] Jamaludin A, Kadir T, Zisserman A. SpineNet: automated classification and evidence visualization in spinal MRIs. Med Image Anal 2017;0:1–11. http://dx.doi.org/10.1016/j.media.2017.07.002.
- [34] Ojala T, Pietikäinen M, Mäenpää T. Gray scale and rotation invariant texture classification with local binary patterns. Pattern Recognit 2000;1842:404–20. http://dx.doi.org/10.1007/3-540-45054-8.
- [35] Ahonen TP. Soft histograms for local binary patterns. Proc Finnish Signal Process Symp 2007;5. http://dx.doi.org/10.1017/CBO9781107415324.004.
- [36] Mazo C, Alegre E, Trujillo M. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM. Comput Methods Programs Biomed 2017;147:1–10. http://dx.doi.org/10.1016/j.cmpb.2017.06.003.
- [37] Cuevas E, Zaldivar D, Pérez-cisneros M. Segmentation with learning automata. Learning 2002.
- [38] Vezhnevets V, Konouchine V. GrowCut – interactive multi-label N-D image segmentation by cellular automata. Graphicon 2005;150–6. http://dx.doi.org/10.1016/j.ajodo.2004.07.036.
- [39] Hadid A, Ylioinas J, Bengherabi M, Ghahramani M, Taleb- Ahmed A. Gender and texture classification: a comparative analysis using 13 variants of local binary patterns. Pattern Recognit Lett 2015;68:231–8. http://dx.doi.org/10.1016/j.patrec.2015.04.017.
- [40] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002;24:971–87. http://dx.doi.org/10.1109/TPAMI.2002.1017623.
- [41] Ojansivu V, Heikkilä J. Blur insensitive texture classification using local phase quantization. Lect Notes Comput Sci ICISP 2008;5099:236–43. http://dx.doi.org/10.1007/978-3-540-69905-7_27.
- [42] Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions, LNCS. AMFG 2007;19:1635–50. http://dx.doi.org/10.1109/TIP.2010.2042645.
- [43] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321–57. http://dx.doi.org/10.1613/jair.953.
- [44] Ian MAH, Witten H, Frank E. Data mining – practical machine learning tools and techniques; 2011.
- [45] Cordeiro FR, Santos WP, Silva-filho AG. A semi-supervised fuzzy growcut algorithm to segment and classify regions of interest of mammographic images. Expert Syst Appl 2016. http://dx.doi.org/10.1016/j.eswa.2016.08.016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ed1a0be-8aac-4729-8871-23190c2a5199