PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of indigenous rhizobacteria in tomato and potato rhizosphere as a source of cytokinins to reduce drought stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of organic materials is currently a concern in developing plant commodities. Important organic materials such as fertilizers, pesticides, and phytohormones. The phytohormone cytokinin is one of the important hormones for plants because cytokinin can help growth and make plants tolerant to abiotic stress. One that can produce cytokinin is rhizobacteria. This study explores the potential of rhizobacteria as producers of cytokinin phytohormone against plant abiotic stress. Rhizobacteria from tomato and potato plants were isolated using standard m63 media and tested for metabolomics using GC-MS. The results showed that these rhizobacteria can produce various cytokinin derivative metabolites such as Trans Zeatin, cis Zeatin, and Kinetin. These metabolites function to increase plant tolerance to abiotic stress. This study uses a bioinformatic approach to GC-MS results to map the characteristics of metabolites that are potential for plants to deal with abiotic stress so that they can become a development strategy to increase productivity under abiotic stress conditions. The results showed that the three isolated bacteria produced higher concentration of kinetin 7N glucosinolate form compared to other cytokinin derivatives. The concentrations were 2.79%, 2.08% and 2.14% in isolate IRT1 10-3, IRT3 10-2, and IRT3 10-4, respectively.
Słowa kluczowe
Rocznik
Strony
246--256
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Faculty of Agriculture and Animal Science, University of Muhammadiyah Malang, 246 Tlogomas Street, Malang, Indonesia
  • Faculty of Agriculture and Animal Science, University of Muhammadiyah Malang, 246 Tlogomas Street, Malang, Indonesia
  • Faculty of Agriculture Bogor Agricultural University, Meranti Street, IPB Dramaga Campus, Bogor, West Java, Indonesia
Bibliografia
  • 1. Ahmadu, T., Abdullahi, A., Ahmad, K., Ahmadu, T., Abdullahi, A., & Ahmad, K. (2021). The role of crop protection in sustainable potato (Solanum tuberosum L.) production to alleviate global starvation problem: An overview. Solanum Tuberosum-A Promising Crop for Starvation Problem, 19–51.
  • 2. Bielach, A., Hrtyan, M., & Tognetti, V. B. (2017). Plants under stress: Involvement of auxin and cytokinin. International Journal of Molecular Sciences, 18(7), 1427.
  • 3. Cui, J., Shao, G., Lu, J., Keabetswe, L., & Hoogenboom, G. (2019). Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Scientia agrícola, 77, e20180390.
  • 4. Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9(6), 335.
  • 5. EL Sabagh, A., Islam, M. S., Hossain, A., Iqbal, M. A., Mubeen, M., Waleed, M., Reginato, M., Battaglia, M., Ahmed, S., & Rehman, A. (2022). Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy, 4, 765068.
  • 6. Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., & Wu, C. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research, 22, 4907–4921.
  • 7. Ghaleh, Z. R., Sarmast, M. K., & Atashi, S. (2020). 6-Benzylaminopurine (6-BA) ameliorates drought stress response in tall fescue via the influencing of biochemicals and strigolactone-signaling genes. Plant Physiology and Biochemistry, 155, 877–887.
  • 8. Godoy, F., Olivos-Hernández, K., Stange, C., & Handford, M. (2021). Abiotic stress in crop species: Improving tolerance by applying plant metabolites. Plants, 10(2), 186.
  • 9. Goubet, A. G., Wheeler, R., Fluckiger, A., Qu, B., Lemaître, F., Iribarren, K.,... & Daillère, R. (2021). Multifaceted modes of action of the anticancer probiotic Enterococcus hirae. Cell Death & Differentiation, 28(7), 2276–2295.
  • 10. Gujjar, R. S., & Supaibulwatana, K. (2019). The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants, 8(12), 542.
  • 11. Hallmark, H. T., Černý, M., Brzobohatý, B., & Rashotte, A. M. (2020). Trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS One, 15(5), e0232762.
  • 12. Hamayun, M., Hussain, A., Khan, S. A., Irshad, M., Khan, A. L., Waqas, M., Shahzad, R., Iqbal, A., Ullah, N., & Rehman, G. (2015). Kinetin modulates physio-hormonal attributes and isoflavone contents of soybean grown under salinity stress. Frontiers in Plant Science, 6, 377.
  • 13. Hoyerová, K., & Hošek, P. (2020). New insights into the metabolism and role of cytokinin N-glucosides in plants. Frontiers in Plant Science, 11, 741.
  • 14. Ikhwan, A., Septia, E., & Novita, B. (2022). Molecular Identification of Potential Rhizobacteria Isolated from Maize (Zea mays L.). 985(1), 012010.
  • 15. Jameson, P. E. (2019). Cytokinin metabolism and compartmentation. In Cytokinins 113–128. CRC press.
  • 16. Jameson, P. E. (2023). Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future. Metabolites, 13(10), 1076.
  • 17. Khoshru, B., Mitra, D., Mahakur, B., Sarikhani, M. R., Mondal, R., Verma, D., & Pant, K. (2020). Role of soil rhizobacteria in utilization of an indispensable micronutrient zinc for plant growth promotion. J. Crit. Rev, 21, 4644–4654.
  • 18. Kurniawan, A., & Chuang, H. (2022). Rhizobacterial Bacillus mycoides functions in stimulating the antioxidant defence system and multiple phytohormone signalling pathways to regulate plant growth and stress tolerance. Journal of Applied Microbiology, 132(2), 1260–1274.
  • 19. Li, L., Zheng, Q., Jiang, W., Xiao, N., Zeng, F., Chen, G., Mak, M., Chen, Z.-H., & Deng, F. (2022). Molecular regulation and evolution of cytokinin signaling in plant abiotic stresses. Plant and Cell Physiology, 63(12), 1787–1805.
  • 20. Li, Q., Wang, H., Wang, H., Zheng, W., Wu, D., & Wang, Z. (2018). Effects of kinetin on plant growth and chloroplast ultrastructure of two Pteris species under arsenate stress. Ecotoxicology and Environmental Safety, 158, 37–43.
  • 21. Liu, Y., Zhang, M., Meng, Z., Wang, B., & Chen, M. (2020). Research progress on the roles of cytokinin in plant response to stress. International Journal of Molecular Sciences, 21(18), 6574.
  • 22. Lu, S., Wen, Y., Bai, L., Liu, G., Chen, Y., Du, H., & Wang, X. (2015). pH-controlled voltammetric behaviors and detection of phytohormone 6-benzylaminopurine using MWCNT/GCE. Journal of Electroanalytical Chemistry, 750, 89–99.
  • 23. Mandal, S., Ghorai, M., Anand, U., Samanta, D., Kant, N., Mishra, T., Rahman, M. H., Jha, N. K., Jha, S. K., & Lal, M. K. (2022). RETRACTED: Cytokinin and abiotic stress tolerance-What has been accomplished and the way forward? Frontiers in Genetics, 13, 943025.
  • 24. Matušková, V., Zatloukal, M., Voller, J., Grúz, J., Pěkná, Z., Briestenská, K., Mistríková, J., Spíchal, L., Doležal, K., & Strnad, M. (2020). New aromatic 6-substituted 2′-deoxy-9-(β)-d-ribofuranosylpurine derivatives as potential plant growth regulators. Bioorganic & Medicinal Chemistry, 28(2), 115230.
  • 25. Maulidah, N. I., Tseng, T.-S., Chen, G.-H., Hsieh, H.-Y., Chang, S.-F., & Chuang, H. (2021). Transcriptome analysis revealed cellular pathways associated with abiotic stress tolerance and disease resistance induced by Pseudomonas aeruginosa in banana plants. Plant Gene, 27, 100321.
  • 26. Mok, M. C. (2019). Cytokinins and plant development—An overview. Cytokinins, 155–166.
  • 27. Naseem, M., Othman, E. M., Fathy, M., Iqbal, J., Howari, F. M., AlRemeithi, F. A., Kodandaraman, G., Stopper, H., Bencurova, E., & Vlachakis, D. (2020). Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems. Scientific Reports, 10(1), 13330.
  • 28. Nieto, K., & Frankenberger Jr, W. (2017). Microbial production of cytokinins. In Soil biochemistry 191–248. Routledge.
  • 29. Patel, T., & Saraf, M. (2017). Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Journal of Plant Interactions, 12(1), 480–487.
  • 30. Pavlů, J., Novák, J., Koukalová, V., Luklová, M., Brzobohatý, B., & Černý, M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. International Journal of Molecular Sciences, 19(8), 2450.
  • 31. Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51, 403–415.
  • 32. Pokorna, E., Hluska, T., Galuszka, P., Hallmark, H. T., Dobrev, P. I., Zaveska Drabkova, L., Filipi, T., Holubova, K., Plíhal, O., & Rashotte, A. M. (2020). Cytokinin N-glucosides: Occurrence, metabolism and biological activities in plants. Biomolecules, 11(1), 24.
  • 33. Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. Drought stress tolerance in plants, Vol 1: physiology and biochemistry, 1–16.
  • 34. Schiller, L. G., & Magnitskiy, S. (2019). Effect of trans-zeatin riboside application on growth of banana (Musa AAA Simmonds) cv. Williams in the juvenile phase. Revista Colombiana de Ciencias Hortícolas, 13(2), 161–170.
  • 35. Sihotang, T., Siregar, L. A. M., & Rahmawati, N. (2024). Growth and biochemical responses of red chili (Capsicum annuum L) under drought conditions with 6-Benzylaminopurine application. International Journal of Basic and Applied Science, 13(2), 61–73.
  • 36. Soderberg, T. J. (2000). Investigation of two enzymes catalyzing transfer of isoprenoid groups to nonisoprenoid acceptors. The University of Utah.
  • 37. Sýkorová, B. (2007). The effect of autoregulated ipt gene expression, exogenous cytokinins and nitrate on cytokinin metabolism and leaf senescence.
  • 38. Tank, J. G., Pandya, R. V., & Thaker, V. S. (2015). IAA and zeatin controls cell division and endoreduplication process in quiescent center cells of Allium cepa root. Indian Journal of Plant Physiology, 20, 124–129.
  • 39. Teribia, N., Tijero, V., & Munné-Bosch, S. (2016). Linking hormonal profiles with variations in sugar and anthocyanin contents during the natural development and ripening of sweet cherries. New Biotechnology, 33(6), 824–833.
  • 40. Zaheer, M. S., Rizwan, M., Aijaz, N., Hameed, A., Ikram, K., Ali, H. H., Niaz, Y., Usman Aslam, H. M., Manoharadas, S., & Riaz, M. W. (2024). Investigating the synergistic effects of biochar, trans-zeatin riboside, and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. BMC Plant Biology, 24(1), 314.
  • 41. Zakharova, E. V., Khaliluev, M. R., & Kovaleva, L. V. (2022). Hormonal signaling in the progamic phase of fertilization in plants. Horticulturae, 8(5), 365.
  • 42. Zargar, S. M., Gupta, N., Nazir, M., Mahajan, R., Malik, F. A., Sofi, N. R.,... & Salgotra, R. K. (2017). Impact of drought on photosynthesis: Molecular perspective. Plant gene, 11, 154–159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ecf4881-53d7-49bd-be1e-cb3915e3a29c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.