PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extremal solutions to a coupled system of nonlinear fractional differential equations with ψ–Caputo fractional derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the well-known monotone iterative technique together with the method of upper and lower solutions, the authors investigate the existence of extremal solutions to a class of coupled systems of nonlinear fractional differential equations involving the ψ–Caputo derivative with initial conditions. As applications of this work, two illustrative examples are presented.
Rocznik
Tom
Strony
19--34
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • Laboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000 Algeria, Algeria
  • Laboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000 Algeria, Algeria
  • Laboratory of Mathematics, Djillali Liabes University of Sidi-Bel-Abbes, Algeria
  • Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
Bibliografia
  • [1] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Dev. Math., 27, Springer, New York, 2015.
  • [2] S. Abbas, M. Benchohra, G.M.N'Guérékat, Advanced Fractional Differential and Integral Equations, Nova Sci. Publ., New York, 2014.
  • [3] S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
  • [4] S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 21 (2018) 1027-1045.
  • [5] S. Abbas, M. Benchohra, B. Samet, Y. Zhou, Coupled implicit Caputo fractional q-difference systems, Adv. Difference Equ., Paper No. 527 (2019) 1-19.
  • [6] R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional di_erential equations and inclusions, Acta Appl. Math. 109 (2010) 973-1033.
  • [7] A. Aghajani, E. Pourhadi, J.J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 16 (2013) 962-977.
  • [8] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017) 460{481. Coupled System of Nonlinear Fractional Differential Equations
  • [9] R. Almeida, Fractional dfferential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc. 42 (2019) 1687-1697.
  • [10] R. Almeida, A.B. Malinowska, M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41 (2018) 336-352.
  • [11] R. Almeida, A.B. Malinowska, T. Odzijewicz, Optimal leader-follower control for the fractional opinion formation model, J. Optim. Theory Appl. 182 (2019) 1171-1185.
  • [12] R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations involving Caputo fractional derivative, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019) 1873-1891.
  • [13] M. Al-Refai, M. Ali Hajji, Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal. 74 (2011) 3531-3539.
  • [14] C. Chen, M. Bohner, B. Jia, Method of upper and lower solutions for nonlinear Caputo fractional diference equations and its applications, Fract. Calc. Appl. Anal. 22 (2019) 1307-1320.
  • [15] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with Caputo derivative via monotone iterative technique, Axioms 9 (2020) 57. DOI:10.3390/axioms9020057
  • [16] H. Fazli, H.G. Sun, S. Aghchi, Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math. 2020 (2020) 1-10.
  • [17] R. Goreno, A.A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, New York, 2014.
  • [18] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [19] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2012 (142) (2012) 1-8.
  • [20] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam, 2006.
  • [21] K.D. Kucche, A. Mali, J. Vanterler da C. Sousa, On the nonlinear Hilfer fractional differential equations. Comput. Appl. Math. 38 (2019) Art. 73, 1-25.
  • [22] K.D. Kucche, A.D. Mali, Initial time di_erence quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative, Comput. Appl. Math. 39, Paper No. 31 (2020) 1-33.
  • [23] X. Lin, Z. Zhao, Iterative technique for a third-order differential equation with three-point nonlinear boundary value conditions, Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 12 (2016) 1-10.
  • [24] S. Liu, H. Li, Extremal system of solutions for a coupled system of nonlinear fractional differential equations by monotone iterative method, J. Nonlinear Sci. Appl. 9 (2016) 3310-3318.
  • [25] Y. Luchko, J.J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal. 10 (2007) 249-267.
  • [26] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
  • [27] M. Metwali, On some qualitative properties of integrable solutions for Cauchy-type problem of fractional order, J. Math. Appl. 40 (2017) 121-134.
  • [28] K.S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
  • [29] K.B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw. 41 (2010) 9-12.
  • [30] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [31] J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.
  • [32] B. Samet, H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving Caputo fractional derivative, J. Inequal. Appl. 2018, Paper No. 286 (2018) 1-11.
  • [33] W. El-Sayed, M. El-Borai, M. Metwali, N. Shemais, On the existence of continuous solutions of a nonlinear quadratic fractional integral equation, J. Advances Math. 19 (2020) 14-25.
  • [34] V.E. Tarasov, Fractional Dynamics, Nonlinear Physical Science, Springer, Heidelberg, 2010.
  • [35] V.E. Tarasov (Editor), Handbook of Fractional Calculus with Applications, Vol. 5, Applications in Physics, Part B, De Gruyter, Berlin, 2019.
  • [36] G. Wang, R.P. Agarwal, A. Cabada, Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, Appl. Math. Lett. 25 (2012) 1019-1024.
  • [37] G. Wang, W. Sudsutad, L. Zhang, J. Tariboon, Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type, Adv. Difference Equ., 2016, Paper No. 211 (2016) 1-11.
  • [38] G.Wang, J. Qin, L. Zhang, D. Baleanu, Monotone iterative method for a nonlinear fractional conformable p-Laplacian differential system, Math. Meth. Appl. Sci. 2020, 1-11.
  • [39] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 2011 (63) (2011) 1-10.
  • [40] J. Wang, X. Li, E-Ulam type stability of fractional order ordinary differential equations, J. Appl. Math. Comput. 45 (2014) 449-459.
  • [41] J.Wang, Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization 63 (2014) 1181-1190.
  • [42] N. Xu, W. Liu, Iterative solutions for a coupled system of fractional differential-integral equations with two-point boundary conditions, Appl. Math. Comput. 244 (2014) 903-911.
  • [43] W. Yang, Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential equations, J. Appl. Math. Comput. 59 (2019) 585-596.
  • [44] S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal. 71 (2009) 2087-2093.
  • [45] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
  • [46] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, 2016.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ec614b5-d3c9-43af-a925-fb18648d7a55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.