PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topology optimization of a 3D part virtually printed by FDM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This research work aims to exhibit the possibility to topologically optimize a mesostructured part printed virtually by FDM taking into account the manufacturing parameters. Design/methodology/approach: The topology optimization of a 3D part printed by FDM was carried out using the software ABAQUS. On the other hand, a numerical approach using a script based on G-code file has been achieved to create a virtual model. Then, it was optimized according to the Solid Isotropic Material with Penalization (SIMP) method, which minimizing the strain energy was the objective function and the volume fraction of 30% was the constraint. Findings: The final topological optimization design of the virtual model is approximately similar to the homogeneous part. Furthermore, the strain energy of the virtual model is less than the homogeneous part. However, the virtually 3D optimized part volume is higher than the homogeneous one. Research limitations/implications: In this study, we have limited our study on one layer owing to reduce the simulation time. Moreover, the time required to optimize the virtual model is inordinate. The ensuing study, we will optimize a multiple layer of the mesostructure. Practical implications: Our study provides a powerful method to optimize with accurately a mesostructure taken into consideration the manufacturing setting. Originality/value: In this paper, we have studied through an original approach the potential of topology optimization of a 3D part virtually printed by FDM. By means of our approach, we were able to optimize topologically the 3D parts printed by FDM taking into account the manufacturing parameters.
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, B.P. 8118 Oasis, Casablanca, Morocco
autor
  • Laboratory of Control and Mechanical Characterization of Materials and Structures, National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, B.P 8118 Oasis, Casablanca, Morocco
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, B.P. 8118 Oasis, Casablanca, Morocco
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, B.P. 8118 Oasis, Casablanca, Morocco
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, National Higher School of Electricity and Mechanics, Hassan II University of Casablanca, B.P. 8118 Oasis, Casablanca, Morocco
Bibliografia
  • [1] D.L. Bourell, Perspectives on additive manufacturing, Annual Review of Materials Research 46 (2016) 1-18. DOI: https://doi.org/10.1146/annurev-matsci-070115-031606
  • [2] ISO/ASTM 52900. Additive Manufacturing-General Principles-Terminology, 2015.
  • [3] S. Jiang, G. Liao, D. Xu, F. Liu, W. Li, Y. Cheng, Z. Li, G. Xu, Mechanical properties analysis of polyetherimide parts fabricated by fused deposition modeling, High Performance Polymers 31/1 (2019) 97-106. DOI: https://doi.org/10.1177/0954008317752822
  • [4] J. Plocher, A. Panesar, Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures, Materials and Design 183 (2019) 108164. DOI: https://doi.org/10.1016/j.matdes.2019.108164
  • [5] M.P. Bendsøe, O. Sigmund, Topology optimization. Theory, Methods, and Applications, Springer Science & Business Media, Berlin, 2013.
  • [6] G.I. Rozvany, A critical review of established methods of structural topology optimization, Structural and Multidisciplinary Optimization 37/3 (2009) 217-237. DOI: https://doi.org/10.1007/s00158-007-0217-0
  • [7] M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering 71/2 (1988) 197-224. DOI: https://doi.org/10.1016/0045-7825(88)90086-2
  • [8] G. Rozvany, The SIMP method in topology optimization-theoretical background, advantages and new applications, Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization, Long Beach, USA, 2000, Paper No. AIAA 2000-4738. DOI: https://doi.org/10.2514/6.2000-4738
  • [9] M. Stolpe, K. Svanberg, An alternative interpolation scheme for minimum compliance topology optimization, Structural and Multidisciplinary Optimization 22/2 (2001) 116-124. DOI: https://doi.org/10.1007/s001580100129
  • [10] Y.M. Xie, G.P. Steven, Evolutionary structural optimization for dynamic problems, Computers and Structures 58/6 (1996) 1067-1073. DOI: https://doi.org/10.1016/0045-7949(95)00235-9
  • [11] M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering 192/1-2 (2003) 227-246. DOI: https://doi.org/10.1016/S0045-7825(02)00559-5
  • [12] G. Allaire, F. Jouve, A.M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics 194/1 (2004) 363-393. DOI: https://doi.org/10.1016/j.jcp.2003.09.032
  • [13] E. Holmberg, B. Torstenfelt, A. Klarbring, Stress constrained topology optimization, Structural and Multidisciplinary Optimization 48/1 (2013) 33-47. DOI: https://doi.org/10.1007/s00158-012-0880-7
  • [14] S. Zhang, A.L. Gain, J.A. Norato, Stress-based topology optimization with discrete geometric components, Computer Methods in Applied Mechanics and Engineering 325 (2017) 1-21. DOI: https://doi.org/10.1016/j.cma.2017.06.025
  • [15] S. Chu, L. Gao, M. Xiao, Z. Luo, H. Li, X. Gui, A new method based on adaptive volume constraint and stress penalty for stress-constrained topology optimization, Structural and Multidisciplinary Optimization 57/3 (2018) 1163-1185. DOI: https://doi.org/10.1007/s00158-017-1803-4
  • [16] Z. Fan, L. Xia, W. Lai, Q. Xia, T. Shi, Evolutionary topology optimization of continuum structures with stress constraints, Structural and Multidisciplinary Optimization 59/2 (2019) 647-658. DOI: https://doi.org/10.1007/s00158-018-2090-4
  • [17] D. Yago, J. Cante, O. Lloberas-Valls, J. Oliver, Topology optimization methods for 3D structural problems: a comparative study, Archives of Computational Methods in Engineering (2021) 1-44 (online first). DOI: https://doi.org/10.1007/s11831-021-09626-2
  • [18] O. Sigmund, K. Maute, Topology optimization approaches: a comparative review, Structural and Multidisciplinary Optimization 48/6 (2013) 1031-1055. DOI: https://doi.org/10.1007/s00158-013-0978-6
  • [19] O. Sigmund, A 99 line topology optimization code written in MATLAB, Structural and Multidisciplinary Optimization 21/2 (2001) 120-127. DOI: https://doi.org/10.1007/s001580050176
  • [20] W. Prager, Optimality criteria in structural design, Proceedings of the National Academy of Sciences PNAS 61/3 (1968) 794-796. DOI: https://doi.org/10.1073/pnas.61.3.794
  • [21] M. Othmani, Kh. Zarbane, A. Chouaf, Enhanced mesostructural modeling and prediction of the mechanical behaviour of acrylonitrile butadiene styrene parts manufactured by fused deposition modeling, International Review of Mechanical Engineering 14/4 (2020) 243-252. DOI: https://doi.org/10.15866/ireme.v14i4.17736
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ec5b7dd-7921-4381-8bc1-e50723624852
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.