Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Hermite-Hadamard inequality is regarded as one of the most favorable inequalities from the research point of view. Currently, mathematicians are working on extending, improving, and generalizing this inequality. This article presents conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in weighted and unweighted forms by using the idea of majorization and convexity together with generalized conformable fractional integral operators. They not only represent continuous and discrete inequalities in compact form but also produce generalized inequalities connecting various fractional operators such as Hadamard, Katugampola, Riemann-Liouville, conformable, and Rieman integrals into one single form. Also, two new integral identities have been investigated pertaining a differentiable function and three tuples. By using these identities and assuming ∣f'∣ and ∣f'∣q(q>1) as convex, we deduce bounds concerning the discrepancy of the terms of the main inequalities.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220225
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
- Financial Mathematics and Actuarial Science (FMAS)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
autor
- Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
autor
- Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
autor
- Financial Mathematics and Actuarial Science (FMAS) – Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
autor
- Financial Mathematics and Actuarial Science (FMAS) – Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Bibliografia
- [1] T.-H. Zhao, B.-C. Zhou, M.-K. Wang, and Y.-M. Chu, On approximating the quasi-arithmetic mean, J. Inequal. Appl. 2019 (2019), Article ID 42, 1–12.
- [2] T.-H. Zhao, Z.-H. Yang, and Y.-M. Chu, Monotonicity properties of a function involving the psi function with applications, J. Inequal. Appl. 2015 (2015), Article ID 193, 1–10.
- [3] T.-H. Zhao, Z.-Y. He, and Y.-M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math. 5 (2020), no. 6, 6479–6495.
- [4] M. J. Cloud, B. C. Drachman, and L. P. Lebedev, Inequalities with Applications to Engineering, Springer, Cham Heidelberg, New York Dordrecht London, 2014.
- [5] Q. Lin, Jensen inequality for superlinear expectations, Stat. Probabil. Lett. 151 (2019), 79–83.
- [6] J. G. Liao and A. Berg, Sharpening Jensen’s inequality, Amer. Statistician. 73 (2019), no. 3, 278–281.
- [7] H.-H. Chu, T.-H. Zhao, and Y.-M. Chu, Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means, Math. Slovaca 70 (2020), no. 5, 1097–1112.
- [8] S. S. Dragomir, M. Adil Khan, and A. Abathun, Refinement of the Jensen integral inequality, Open Math. 14 (2016), 221–228.
- [9] M. Adil Khan, Z. Al-sahwi, and Y.-M. Chu, New estimations for Shannon and Zipf-Mandelbrot entropies, Entropy 20 (2018), no. 8, 608.
- [10] M. Adil Khan, M. Hanif, Z. A. Khan, K. Ahmad, and Y.-M. Chu, Association of Jensen’s inequality for s-convex function with Csiszár divergence, J. Inequal. Appl. 2019 (2019), no. 1, 1–14.
- [11] T.-H. Zhao, M.-K. Wang, and Y.-M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind, J. Math. Inequal. 15 (2019), no. 1, 701–724.
- [12] T.-H. Zhao, M.-K. Wang, and Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fiiiis. Nat. Ser. A Mat. RACSAM 115 (2021), no. 2, 1–13.
- [13] T.-H. Zhao, Z.-Y. He, and Y.-M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Methods Funct. Theory 21 (2021), no. 3, 413–426.
- [14] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91–95.
- [15] M. Adil Khan, S. Khan, and Y.-M. Chu, New estimates for the Jensen gap using s-convexity with applications, Front. Phys. 8 (2020), 313.
- [16] A. McD. Mercer, A variant of Jensen inequality, J. Ineq. Pure Appl. Math. 4 (2003), no. 4, Article 73.
- [17] M. E. Kiris, M. Eyüp, and M. Z. Sarikaya, On Ostrowski type inequalities and Čebyšev type inequalities with applications, Filomat 29 (2015), no. 8, 1695–1713.
- [18] M. Z. Sarikaya, On new Hermite-Hadamard Fejér type integral inequalities, Stud. Univ. Babes-Bolyai Math. 57 (2012), no. 3, 377–386.
- [19] S. S. Dragomir and S. Fitzpatrick, The Hadamardas inequality for s-convexn functions in the second sense, Demonstratio Math. 32 (1999), no. 4, 687–696.
- [20] S. S. Dragomir, On the Hadamard’s type inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math. 5 (2001), 775–788.
- [21] N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequat. Math. 80 (2010), 193–199.
- [22] M. R. Delavar and M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities, SpringerPlus 5 (2016), no.1, 1–9.
- [23] F. Cesarone, M. Caputo, and C. Cametti, Memory formalism in the passive diffusion across a biological membrane, J. Membr. Sci. 250 (2004), 79–84.
- [24] M. Caputo, Modeling social and economic cycles, Elgar, Cheltenham, UK, 2014.
- [25] M. El-Shahed, Fractional calculus model of the semilunar heart valve vibrations, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 37033, 2003, 711–714.
- [26] G. Iaffaldano, M. Caputo, and S. Martino, Experimental and theoretical memory diffusion of water in the sand, Hydrol. Earth Syst. Sc. 10 (2006), 93–100.
- [27] M. Naeem, H. Razazadeh, A. A. Khammash, R. Shah, and S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Mathematics 2022 (2022), Article ID 3688916, 1–12.
- [28] U. Younas, J. Ren, L. Akinyemi, and H. Razazadeh, On the multiple explicit exact solutions to the double-chain DNA dynamical system, Math. Methods Appl. Sci. 46 (2023), no. 6, 6309–6323.
- [29] D. Kumar, A. Yildirim, M. K. A. Kabaar, H. Razazadeh, and M. E. Samei, Exploration of some novel solutions to a coupled Schrödinger-KdV equations in the interactions of capillary-gravity waves, Math. Sci. (2022), 1–13, DOI: https://doi.org/10.1007/s40096-022-00501-0.
- [30] H. Öagülmüş and M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat 35 (2021), 2425–2436.
- [31] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Baa̧k, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), no. 9–10, 2403–2407.
- [32] J. Zhao, S. I. Butt, J. Nasir, Z. Wang, and I. Tlili, Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives, J. Func. Spaces 2020 (2020), no. 1, 1–11.
- [33] S. Zhao, S. I. Butt, W. Nazeer, J. Nasir, M. Umar, and Y. Liu, Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results, Adv. Differential Equations 2020 (2020), no. 1, 1–17.
- [34] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Aapplications of Fractional Differential Equations, Elsevier, Amsterdam, vol. 204, 2006.
- [35] J. Hadamard, Essai sur laetude des fonctions donnees par leur developpment de Taylor, J. Pure Appl. Math. 4 (1892), no. 8, 101–186.
- [36] P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl. 269 (2002), no. 2, 387–400.
- [37] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), no. 3, 860–865.
- [38] M. Jleli, D. O’Regan, and B. Sameet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turk. J. Math. 40 (2016), no. 6, 1221–1230.
- [39] T. U. Khan and M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math. 346 (2019), 378–389.
- [40] T. U. Khan and M. Adil Khan, Hermite-Hdadamard inequality for new generalized conformable fractional operators, AIMS. Math. 6 (2020), no. 1, 23–38.
- [41] B.-Y. Wang, Foundations of Majorization Inequalities, Beijing Normal University Press, Beijing, 1990.
- [42] M. Niezgoda, A generalization of Merceras result on convex functions, Nonlinear Anal. 71 (2009), 2771–2779.
- [43] T.-H. Zhao, M.-K. Wang, and Y.-M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math. 5 (2020), no. 5, 4512–4528.
- [44] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, and Y.-M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals 30 (2022), no. 1, 1–12.
- [45] T.-H. Zhao, L. Shi, and Y.-M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM 114 (2020), no. 2, 1–14.
- [46] T.-H. Zhao, M.-K. Wang, W. Zhang, and Y.-M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl. 2018 (2018), no. 1, 1–15.
- [47] Y.-M. Chu and T.-H. Zhao, Concavity of the error function with respect to Hölder means, Math. Inequal. Appl. 19 (2016), no. 2, 589–595.
- [48] S. Faisal, M. Adil Khan, T. U. Khan, T. Saeed, A. M. Alshehri, and E. R. Nwaeze, New “Conticrete” Hermite-Hadamard-Jensen-Mercer fractional inequalities, Symmetry 14 (2022), no. 2, 294.
- [49] S. Faisal, M. Adil Khan, and S. Iqbal, Generalized Hermite-Hadamard-Mercer type inequalities via majorization, Filomat 36 (2022), no. 2, 469–483.
- [50] S. Faisal, M. Adil Khan, T. U. Khan, T. Saeed, and Z. M. M. M. Syed, Unifications of continuous and discrete fractional inequalities of the Hermite-Hadamard-Jensen-Mercer type via majorization, J. Funct. Spaces 2022 (2022), 24.
- [51] M. Kian and M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra 26 (2013), 742–753.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ebd9d86-165e-48b0-a014-6b4ff3b2eb70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.