PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie przemieszczeń powierzchni terenu indukowanych drenażem warstw skalnych - przegląd literatury

Identyfikatory
Warianty tytułu
EN
Modelling of land surface movements caused by rock layer drainage - literature review
Języki publikacji
PL
Abstrakty
PL
Jedną z najbardziej rozpowszechnionych konsekwencji pompowania wód ze zbiorników podziemnych są przemieszczenia powierzchni terenu. Podstawową przyczyną tego zjawiska jest ekscesywne wykorzystanie zasobów wody podziemnej, które prowadzi m.in. do powstania deformacji o charakterze ciągłym. Na obszarze Polski odwodnieniowa komprymacja górotworu związana jest najczęściej z prowadzoną eksploatacją górniczą. Przemieszczenia powierzchni terenu powstałe na skutek odwodnienia warstw skalnych mogą przyjmować wartości z przedziału od kilkudziesięciu mm do nawet kilkunastu m. Zasięg tego zjawiska jest zazwyczaj rozległy i w wielu przypadkach trudny do jednoznacznego zdefiniowania. Do modelowania odwodnieniowych przemieszczeń powierzchni terenu stosowanych jest wiele metod. Analizy i symulacje tego rodzaju prowadzone są zazwyczaj w oparciu o metody teoretyczne, które pozwalają na holistyczne ujęcie zagadnienia geomechanicznego przekształcenia warstw skalnych indukowanego drenażem górotworu i uzyskanie bardzo dobrych wyników modelowania. Są jednak one często mało efektywne, w szczególności w aspekcie czasochłonności obliczeń. Z tego względu wskazuje się na konieczność prowadzenia dalszych badań, które umożliwią bardziej skuteczne modelowanie kompakcji warstw wodonośnych. Obecnie, szczególna uwaga skupiona jest na badaniach nad wykorzystaniem w tym celu InSAR oraz sztucznej inteligencji. Artykuł przedstawia przegląd modeli stosowanych do predykcji przemieszczeń powierzchni terenu indukowanych drenażem warstw skalnych.
EN
One of the most common consequences of pumping water from groundwater reservoirs includes land surface movements. The main cause of this phenomenon is the excess use of groundwater resources, which leads to the development of continuous deformations. In Poland, the reduction of rock mass due to drainage is most often connected with mining operations. Land surface movements caused by rock layer drainage may range from several dozen millimetres to even several metres. The scope of this phenomenon is usually extensive and, in many cases, difficult to define clearly. Many methods are used to model land surface movements caused by drainage. These types of analyses and simulations are generally based on theoretical methods, which make it possible to adopt a holistic approach to the issue of geomechanical rock mass transformation due to rock mass drainage and to obtain very good modelling results. However, they are often inefficient, especially when it comes to time-consu¬ming calculations. Therefore, the necessity of carrying out further research in order to allow aquifer compaction to be modelled more efficiently is indicated. At present, particular attention is paid to research on the use of InSAR and artificial intelligence for this purpose. The paper presents an overview of models used to predict land surface movements caused by rock layer drainage.
Rocznik
Tom
Strony
2--15
Opis fizyczny
Bibliogr. 110 poz.
Twórcy
autor
  • Akademia Górniczo-Hutnicza w Krakowie, Wydział Geodezji Górniczej i Inżynierii Środowiska
  • Akademia Górniczo-Hutnicza w Krakowie, Wydział Geodezji Górniczej i Inżynierii Środowiska
  • Akademia Górniczo-Hutnicza w Krakowie, Wydział Geodezji Górniczej i Inżynierii Środowiska
  • Akademia Górniczo-Hutnicza w Krakowie, Wydział Geodezji Górniczej i Inżynierii Środowiska
Bibliografia
  • 1. Aichi M., Tokunaga T.: Poroelastic modeling to assess the effect of water injection for land subsidence mitigation. IAHS 2015, doi: 10.5194/piahs-372-431-2015.
  • 2. Al-Sittawy M., Gad S., Fouad R. et al.: Assessment of soil subsidence due to long-term dewatering, Esna city, Egypt. Water Sci. 2019, doi: 10.1080/11104929.2019.1630058.
  • 3. Biot M.A.: General theory of three-dimensional consolidation. Journ. of Appl. Phys. 1941, doi: 10.1063/1.1712886.
  • 4. Blachowski J., Kopeć A., Milczarek W., Owczarz K.: Evolution of secondary deformations captured by satellite radar interferometry: Case Study of an abandoned coal basin in SW Poland. Sustain. 2019, 11(3), s. 884, https://doi. org/10.3390/sull030884.
  • 5. Boni R., Cigna F., Bricker S. et al.: Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data. Journ. Hydrol. 2016, 540, s. 835-849, doi: 10.1016/j.jhydrol.2016.06.068.
  • 6. Boni R., Meisina C., Cigna F. et al.: Exploitation of satellite A-DInSARTime series for detection, characterization and modelling of land subsidence. Geosciences 2017, 7(2), s. 25, doi: 10.3390/geosciences7020025.
  • 7. Borchers J.W.: Association of Engineering Geologists. Sacramento Section.; Association of Engineering Geologists. Subsidence Committee. Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symp. on Land Subsidence, Star Pub. Co, 1998.
  • 8. Bruno M.S.: Subsidence-induced well failure. SPE Drill Eng. 1992, doi: 10.2118/20058-PA.
  • 9. BurbeyT.J.: Stress-strain analyses for aquifer-system characterization. Ground Water 2001, doi: 10.1111/j.l745- 6584.2001.tb00358.x.
  • 10. BurbeyT.J.: The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA. Hydrogeol Journ. 2002, 10(5), s. 525-538, doi: 10.1007/S10040-002-0215-7.
  • 11. Burbey T.J., Helm D.C.: Modeling three-dimensional deformation in response to pumping of unconsolidated aquifers. Environ. Eng. Geosci. 1999, doi: 10.2113/gsee geosci.v.2.199.
  • 12. Castellazzi P., Arroyo-Dominguez N., Martel R. et al.: Land subsidence in major cities of central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. Journ. Appl. Earth Obs. Geoinf. 2016, https://doi.org/ 10.1016/j.jag.2015.12.002.
  • 13. Choi J.K., Kim K.D., Lee S. et al.: Application of a fuzzy operator to susceptibility estimations of coal mine subsidence in Taebaek City, Korea. Environ. Earth Sci. 2010, doi: 10.1007/sl2665-009-0093-6.
  • 14. Cooper H.H.: The equation of groundwater flow in fixed and deforming coordinates. J. Geophys. Res. 1966, https://doi.org/10.1029/jz071i020p04785.
  • 15. Deng X., Li F., Zhao Y. et al.: Regulation of deep groundwater based on MODFLOW in the water intake area of the South-to-North Water Transfer Project in Tianjin, China. Journ. Hydroinformatics 2018, doi: 10.2166/ hydro.2018.126.
  • 16. Don N.C., Hang N.T.M., Araki H. et al.: Groundwater resources management under environmental constraints in Shiroishi of Saga plain, Japan. Environ Geol. 2006, doi: 10.1007/s00254-005-0109-9.
  • 17. Faunt C.C.: Groundwater Availability of the Central Valley Aquifer, California. 2010, doi: 10.3133/PP1766.
  • 18. Faunt C.C., Sneed M., Traum J., Brandt J.T.: Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. Journ. 2016, https://doi.org/10.1007/sl0040-015-1339-x.
  • 19. Fokker P.A., Orlic B.: Semi-analytic modelling of subsidence. Math. Geol. 2006, doi: 10.1007/sll004-006-9034-z.
  • 20. Gambolati G.: A three-dimensional model to compute land subsidence. Hydrol. Sci. Bull. 1972, doi: 10.1080/02626667209493823.
  • 21. Gambolati G., Freeze R.A.: Mathematical simulation of the subsidence of Venice: 1. Theory. Water Resour. Res. 1973, https://doi.org/10.1029/WR009i003p00721.
  • 22. Gambolati G., Teatini R: Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 2015, 51(6), s. 3922-3955, https://doi.org/10.1002/2014WR016841.
  • 23. Galloway D.L., BurbeyT.J.: Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. Journ. 2011, 19(8), s. 1459-1486, https://doi.org/10.1007/sl0040-011-0775-5.
  • 24. Galloway D.L., Hudnut K.W., Ingebritsen S.E. et al.: Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California.Water Resour Res. 1998, 34(10), s. 2573-2585, doi: 10.1029/98WR01285.
  • 25. Geertsma J.: A basic theory of subsidence due to reservoir compaction: The homogeneous case. Verh van het Ned Geol Mijnb - Kundig Genoot 1973, 28, s. 43-62.
  • 26. Ghorbanzadeh O., BlaschkeT, Aryal J. etal.: A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. Journ. Spat. Sci. 2018, doi: 10.1080/14498596.2018.1505564.
  • 27. Guo L., Gong H., Zhu F. et al.: Analysis of the spatiotemporal variation in land subsidence on the Beijing Plain, China. Remote Sens. 2019, https://dol.org/10.3390/rslll01170.
  • 28. Guzy A., Ahmed A.W., Malinowska A.: Spatio-temporal distribution of land subsidence and water drop caused by underground exploitation of mineral resources. Proceedings of the Int. Multidisciplinary Scientific GeoConf.: Surveying Geology and Mining Ecology Management, SGEM 2018, doi: 10.5593/sgem2018v/1.5/s02.058.
  • 29. Guzy A., Malinowska A.A.: Assessment of the Impact of the Spatial extent of land subsidence and aquifer system drainage induced by underground mining. Sustainability 2020, 12(19), s. 7871, doi: 10.3390/sul2197871.
  • 30. Guzy A., Malinowska A.A.: State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water (Switzerland) 2020, https://doi.org/10.3390/wl2072051.
  • 31. Guzy A., Malinowska A.A., Witkowski W.T., Hejmanowski R.: Application of satellite radar interferometry InSAR in the modeling of land surface movement induced by rock mass drainage. Przegląd Górniczy 2020, nr 8, s. 13-26.
  • 32. Hanson R.T., Anderson S.R., Pool D.R.: Simulation of ground-water flow and potential land subsidence, Avra Valley, Arizona.1990, doi: 10.3133/wri904178.
  • 33. Hanson R.T., Benedict J.F.: Simulation of ground-water flow and potential for land subsidence, Upper Santa Cruz Basin, Arizona.1994, doi: 10.3133/wri934196.
  • 34. Harbaugh B.A.W., Arlen W.: MODFLOW-2005, The US Geological Survey Modular Ground-Water Model - the Ground-Water Flow Process. US Geol. Surv. Tech. Methods, 2005.
  • 35. Harbaugh B.A.W., Banta E.R., Hill M.C. et al.: MODFLOW-2000, The US Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process. US Geol. Surv., 2000.
  • 36. Hejmanowski R.: Prognozowanie deformacji górotworu i powierzchni terenu na bazie uogólnionej teorii Kno- thego dla złóż surowców stałych, ciekłych i gazowych. Wyd. IGSMiE PAN, Kraków 2001.
  • 37. Hejmanowski R., Barends F.B.J., Brouwer F.J.J. et al.: Prediction of surface subsidence due to oil or gasfield development. L. Subsid. 1995.
  • 38. Hejmanowski R., Witkowski W.T.: Suitability assessment of artificial neural network to approximate surface subsidence due to rock mass drainage. Journ. Sustain. Min. 2015, doi: 10.1016/j.jsm.2015.08.014.
  • 39. Helm D.C.: A field-tested model to simulate and predict subsidence due to fluid withdrawal. Aust. Geomech. 1986, https://doi.org/10.1007/sl2665-014-3705-8.
  • 40. Helm D.C.: Field-based computational techniques for predicting subsidence due to fluid withdrawal. GSA Rev. Eng. Geol. 1984, https://doi.org/10.1130/REG6-pl.
  • 41. Helm D.C.: Horizontal aquifer movement in a Theis-Thiem confined system. Water Resour. Res. 1994, doi: 10.1029/94WR00030.
  • 42. Helm D.C.: One-dimensional simulation of aquifer system compaction. Water Resour. Res. 1975.
  • 43. Helm D.C.: One-dimensional simulation of aquifer system compaction near Pixley, California: 1. Constant parameters. Water Resour. Res. 1975, https://doi.org/10.1029/WR011i003p00465.
  • 44. Helm D.C.: One-dimensional simulation of aquifer system compaction near Pixley, California: 2. Stress-dependent parameters. Water Resour. Res. 1976, https://doi.org/ 10.1029/WR012i003p00375.
  • 45. Hoffmann J., Leake S.A., Galloway D.L. et al.: MODFLOW-2000 ground-water model - User guide to the Subsidence and Aquifer-System Compaction (SUB) Package. US Geol Surv Open-File, Rep. 2003.
  • 46. Hole J.K., Bromley C.J., Stevens N.F., Wadge G.: Subsidence in the geothermal fields of the Taupo Volcanic Zone, New Zealand from 1996 to 2005 measured by InSAR. Journ. Volcanol. Geotherm. Res. 2007, https:// doi.org/10.1016/j.jvolgeores.2007.07.013.
  • 47. Hsieh P.A.: Deformation-induced changes in hydraulic head during ground-water withdrawal. Ground Water 1996, doi: 10.1111/j.1745-6584.1996.tb02174.x.
  • 48. Hu B., Zhou J., Wang J. et al.: Risk assessment of land subsidence at Tianjin coastal area in China. Environ. Earth Set. 2009, doi: 10.1007/S12665-009-0024-6.
  • 49. Hung W.C., Hwang C., Liou J.C. et al.: Modeling Aquifer-system compaction and predicting land subsidence in Central Taiwan. Eng. Geol. 2012, https://doi.org/ 10.1016/j.enggeo.2012.07.018.
  • 50. Hwang J.M., Wu C.M.: Land subsidence problems in Taipei Basin. IAHS 1969, s. 21-34.
  • 51. Ingebritsen S.E., Sanford W.E.: Groundwater in Geologic Processes. 1998, doi: 10.1111/j. 1468- -8123.2009.00253.x.
  • 52. Jackson J.D., Helm D.C., Brumley J.C.: The role of poroviscosity in evaluating land subsidence due to groundwater extraction from sedimentary basin sequences. Geophis. Int. 2004, 43(4), s. 689-695.
  • 53. Jacob C.E.: On the flow of water in an elastic artesian aquifer. Eos. Trans. Am. Geophys. Union 1940, https:// doi.org/10.1029/TR021i002p00574.
  • 54. Jeng D.I.: A Three-dimensional Model of Poroviscous Aquifer Deformation. 2005.
  • 55. Jiang L., Helm D.: A general formulation for saturated aquifer deformation under dynamic and viscous conditions. Proceedings of the Int. Symp. Land Subsidence. The Hague, 1995, IAHS 1995, s. 323-332, doi: 10.1016/ s0148-9062(97)87311-l.
  • 56. Kasmarek M.C., Strom E.W.: Hydrogeology and Simulation of Ground-Water Flow and Land-Surface Subsidence in the Chicot and Evangeline Aquifers, Houston Area, Texas. 2002, doi: 10.3133/wri024022.
  • 57. Kenselaar F., Quadvlieg R.: Trend-signal modelling of land subsidence.Proceedings of the 10th FIG Int. Symp. on Deformation Measurements, California, USA 2001, s. 336-345.
  • 58. Kim K.D., Lee S., Oh H.J. et al.: Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS. Environ. Geol. 2006, doi: 10.1007/s00254-006-0290-5.
  • 59. Kim J.M., Parizek R.R.: A mathematical model for the hydraulic properties of deforming porous media. Ground Water 1999, doi: 10.1111/j.1745-6584.1999.tb01141.x.
  • 60. Knothe S.: Equation of the subsidence profile. Arch. Min. Metali. 1953, 1, s. 22-38.
  • 61. Knothe S.: Observations of surface movements under influence of mining and their theoretical interpretation. Proceedings of the European Congress on Ground Movement 1957, s. 210-218.
  • 62. Kooi H., Yuherdha A.T.: Updated Subsidence Scenarios Jakarta MODFLOW SUB-CR Calculations for Sunter, Daan Mogot and Marunda. 2018.
  • 63. Kowalski A.: Deformacje powierzchni na terenach górniczych kopalń węgla kamiennego. Wyd. GIG, Katowice 2020.
  • 64. Kumpel H.J.: Theory of Linear poroelasticity with applications to geomechanics and hydrogeology. Geophys. Journ. Int. 2002, doi: 10.1046/j.l365-246x.2002.01757.x.
  • 65. Larson K.J., Basagaoglu H., Marino M.: Numerical simulation of land subsidence in the Los Banos-Kettleman City area, California.Water Resour Cent. 2001.
  • 66. Lary D.J., Alavi A.H., Gandomi A.H. et al.: Machine learning in geosciences and remote sensing. Geosci. Front. 2016, doi: 10.1016/j.gsf.2015.07.003.
  • 67. Leake S.A.: Interbed storage changes and compaction in models of regional groundwater flow. Water Resour Res. 1990, doi: 10.1029/WR026i009p01939.
  • 68. Leake S.A.: Simulation of vertical compaction in models of regional ground-waterflow. IAHS Publication, 1991, s. 565-574, doi: 10.1016/0148-9062(93)90350-m.
  • 69. Leake S.A., Galloway D.L.: MODFLOW Ground-Water Model-User Guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for Water-Table Aquifers. US Geol. Surv. Tech. Methods, 2007.
  • 70. Leake S.A., Galloway D.L.: Use of the SUB-WT package for MODFLOW to simulate aquifer-system compaction in Antelope Valley, California, USA. IAHS.2010.
  • 71. Lee S., Hyung-Sup J. (red.): Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing. MDPI 2019, doi: 10.3390/books978-3-03921-216-3.
  • 72. LeeS., Park I., Choi J.K.: Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environ. Manage. 2012, doi: 10.1007/s00267-011-9766-5.
  • 73. Li J.: Transient radial movement of a confined leaky aquifer due to variable well flow rates. Journ. Hydrol. 2007, doi: 10.1016/j.jhydrol.2006.09.023.
  • 74. Li J., Helm D.C.: Numerical formulation of dynamic behavior within saturated soil characterized by elasto-vi- scous behavior with an application to Las Vegas Valley. 1997, s. 911-916.
  • 75. Liu,Y., Helm D.C.: Inverse procedure for calibrating parameters that control land subsidence caused by subsur¬face fluid withdrawal: 2. Field application. Water Resour. Res. 2008, https://doi.org/10.1029/2007wr006606.
  • 76. Malinowska A., Hejmanowski R., Dai H.: Ground movements modeling applying adjusted influence function. Int. Journ. Min. Sci. Technol. 2020, doi: 10.1016/j.ijmst .2020.01.007.
  • 77. McCann G.D., Wilts C.H.: A Mathematical Analysis of the Subsidence in the Long Beach - San Pedro Area. California Inst, of Technology 1951.
  • 78. McDonald M.G., Harbaugh A.W.: A modular three-dimensional finite-difference groundwater flow model. 1984, doi: 10.1016/0022-1694(86)90106-x.
  • 79. Narasimhan T.N., Witherspoon P.A.: Numerical Model for Lan'd Subsidence in Shallow Groundwater Systems. 1976.
  • 80. Neuman S.P., Preller C., Narasimhan T.N.: Adaptive explicit-implicit quasi three-dimensional finite element model of flow and subsidence in multiaquifer systems. Water Resour. Res. 1982, https://doi.org/10.1029/ WR018i005p01551.
  • 81. Nishikawa T., Rewis D.L., Martin P.: Numerical Simulation of Ground-Water Flow and Land Subsidence at Edwards Air Force Base, Antelope Valley, California. 2001, doi: 10.3133/wri20014038.
  • 82. Oh H.J., Ahn S.C., Choi J.K. et al.: Sensitivity analysis for the GIS-based mapping of the ground subsidence hazard near abandoned underground coal mines. Environ. Earth Sci. 2011, doi: 10.1007/S12665-010-0855-1.
  • 83. Oh H.J., Lee S.: Assessment of ground subsidence using GIS and the weights-of-evidence model. Eng. Geol. 2010, doi: 10.1016/j.enggeo.2010.06.015.
  • 84. Poland J.F.: Guidebook to Studies of Land Subsidence Due to Ground-Water Withdrawal. UNESCO, Paris 1984.
  • 85. Pope J.P., Burbey T.J.: Multiple-aquifer characterization from single borehole extensometer records. Ground Water 2004, https://doi.Org/10.llll/j.1745-6584.2004. tb02449.x.
  • 86. Pradhan B., Abokharima M.H., Jebur M.N. et al.: Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat. Hazards 2014, doi: 10.1007/S11069-014-1128-1.
  • 87. Pratt W.E., Johnson D.W.: Local subsidence of the Goose Creek Oil Field. Journ. Geol. 1926.
  • 88. Prudic D.E.: Documentation of a Computer Program to Simulate Stream-Aquifer Relations Using a Modular, Finite-Difference Ground-Water Flow Model. U.S. Geol. Surv. Open-File Rep. 88-729 1989, https://doi.org/ Open-File Report 88-729.
  • 89. Qin H., Andrews C.B., Tian F. et al.: Groundwater-pumping optimization for land-subsidence control in Beijing Plain, China. HydrogeoL Journ. 2018, https://doi.org/10.1007/sl0040-017-1712-z.
  • 90. Ren G., Buckeridge J., Li J.: Estimating land subsidence induced by groundwater extraction in unconfined aquifers using an influence function method. Journ. Water Resour. Plan. Manag. 2015, doi: 10.1061/(ASCE) WR.1943-5452.0000479.
  • 91. Schwartz F.W., Zhang H.: Fundamentals of Ground Water. Wiley 2003.
  • 92. ShahT.: Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Sci. Technol. 2005, https://doi.org/10.2166/wst. 2005.0217.
  • 93. Shibasaki T., Shindo T.: The Hydrologic balance in the land subsidence phenomena. IAHS 1969, s. 201-215.
  • 94. Sroka A., Hejmanowski R.: Subsidence prediction caused by the oil and gas development. Proceedings of the 3rd/12th FIG Symp, 2006.
  • 95. Szczepiriski J.: The significance of groundwater flow modeling study for simulation of opencast mine dewatering, flooding and the environmental impact. Water (Switzerland) 2019, https://doi.org/10.3390/wll040848.
  • 96. Tang Y.Q., Cui Z.D., Wang J.X. et al.: Application of grey theory-based model to prediction of land subsidence due to engineering environment in Shanghai. Environ. Geol. 2008, doi: 10.1007/s00254-007-1009-y.
  • 97. Taylor R.G., Scanlon B., Doll P. et al.: Ground water and climate change. Nature Climate Change 2013, https:// doi.org/10.1038/nclimatel744.
  • 98. Terzaghi K.: Principles of Soil Mechanics: IV-Settlement and Consolidation of Clay. Eng. News-Record 1925.
  • 99. Terzaghi K.: Theoretical Soil Mechanics. 1943, https://doi.org/10.1002/9780470172766.
  • 100. Truplett T., Yurchak D.: Determination of intensity functions for predicting subsidence from coal mining, potash mining, and groundwater withdrawal using the influence function technique. Proceedings of the 6. Int. FIG Symp. on Deformation Measurements: Measurement, Modeling and Prediction 1996, s. 761-773.
  • 101. Verruijt A.: Elastic Storage of Aquifers.Flow through Porous Media. Academic Press 1969.
  • 102. Wada Y., Bierkens M.F.P.: Sustainability of global water use: Past reconstruction and future projections. Envi¬ron. Res. Lett. 2014, https://doi.Org/10.1088/1748-9326/9/ 10/104003.
  • 103. Whittaker B.N., Reddish D.J.: Subsidence: Occurrence, Prediction, and Control. Elsevier 1989.
  • 104. Witherspoon P.A., Freeze R.A.: The role of aquitards in multiple-aquifer systems. Eos. Trans. Am. Geophys. Union 1972, 53(7), 743, https://doi.org/10.1029/E0053i007p00743.
  • 105. Witkowski W.T.: Modelowanie zmian obniżeń w niecce odwodnieniowej z wykorzystaniem metody trendu. Przegląd Górniczy 2013, nr 7, s. 35-40.
  • 106. WolkersdorferC., Thiem G.: Ground water withdrawal and land subsidence in northeastern Saxony (Germany). Mine Water Environ. 1999, 18(1), s. 81-92, doi: 10.1007/bf02687252.
  • 107. Yamaguchi R.: Change of water level of a deep weel in the University of Tokyo. Tokyo Univ. Earthq. Res. Inst. Bull. 1969, 47(6), s. 1093-1111.
  • 108. Zamanirad M., Sarraf A., Sedghi H. et al.: Modeling the Influence of Groundwater Exploitation on Land Subsi¬dence Susceptibility Using Machine Learning Algorithms. Nat. Resour. Res. 2020, doi: 10.1007/S11053-019- 09490-9.
  • 109. Zhi-Xiang T., Pei-Xian L., Li-Li Y. et al.: Study of the method to calculate subsidence coefficient based on SVM. Procedia Earth and Planetary Science 2009, doi: 10.1016/j.proeps.2009.09.150.
  • 110. Zhu L., Gong H., Li X. et al.: Comprehensive analysis and artificial intelligent simulation of land subsidence of Beijing, China. Chinese Geogr. Sci. 2013, doi: 10.1007/S11769-013-0589-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eb767e6-052d-427b-82c7-3c9b9cfa470f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.