Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A genetic algorithm (GA) is an artificial intelligence method used for optimization. We applied a GA to the inversion of magnetic anomalies over a thick dike. Inversion of nonlinear geophysical problems using a GA has advantages because it does not require model gradients or welldefined initial model parameters. The evolution process consists of selection, crossover, and mutation genetic operators that look for the best fit to the observed data and a solution consisting of plausible compact sources. The efficiency of a GA on both synthetic and real magnetic anomalies of dikes by estimating model parameters, such as depth to the top of the dike (H), the half-width of the dike (B), the distance from the origin to the reference point (D), the dip of the thick dike (δ), and the susceptibility contrast (k), has been shown. For the synthetic anomaly case, it has been considered for both noise-free and noisy magnetic data. In the real case, the vertical magnetic anomaly from the Pima copper mine in Arizona, USA, and the vertical magnetic anomaly in the Bayburt–Sarıhan skarn zone in northeastern Turkey have been inverted and interpreted. We compared the estimated parameters with the results of conventional inversion methods used in previous studies. We can conclude that the GA method used in this study is a useful tool for evaluating magnetic anomalies for dike models.
Wydawca
Czasopismo
Rocznik
Tom
Strony
627--634
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
- Faculty of Engineering, Department of Geophysics, Dokuz Eylül University, Izmir, Turkey
Bibliografia
- 1. Abdelazeem M, Gobashy M (2006) Self-potential inversion using genetic algorithm. JKAU Earth Sci 17:83–101
- 2. Arslan Z (1994) Geology of Bayburt and surrounding areas and Granites. PhD thesis Karadeniz Technical University, Trabzon (in Turkish)
- 3. Atchuta Rao D, Ram Babu HV, Venkata Raju DCh (1985) Inversion of gravity and magnetic anomalies over some bodies of simple geometric shape. Pure Appl Geophys 123(2):239–249
- 4. Aydın A, Gelişli K (1996) Magnetic studies for the skarn zone of Sarıhan–Bayburt. Jeofizik 10:41–51 (in Turkish with English Abstract)
- 5. Berg E (1990) Simple convergent genetic algorithm for inversion of multiparameter data. In: Proceedings of the 60th annual international meeting, Society of Exploration Geophysicists, p 1126–1128
- 6. Bhattacharya BK (1980) A generalized multi body model for inversion of magnetic anomalies. Geophysics 45(2):255–270
- 7. Boschetti F, Denith MC, List RD (1996) Inversion of seismic refraction data using genetic algorithms. Geophysics 61:1715–1727
- 8. Boschetti F, Denith MC, List RD (1997) Inversion of potential field data by genetic algorithms. Geophys Prospect 45:461–478
- 9. Çaylak Ç, Göktürkler G, Sarı C (2012) Inversion of multi-channel surface wave data using a sequential hybrid approach. J Geophys Eng 9:19–28
- 10. Chen C, Xia J, Liu J, Feng G (2006) Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm. Comput Geosci 32:230–239
- 11. Chunduru RK, Sen MK, Stoffa PL (1997) Hybrid optimization methods for geophysical inversion. Geophysics 62:1196–1207
- 12. Currenti G, Del Negro C, Nunnari G (2005) Inverse modelling of volcanomagnetic fields using a genetic algorithm technique. Geophys J Int 163:403–416
- 13. Currenti G, Del Negro C, Fortuna L, Ganci G (2007) Integrated inversion of ground deformation and magnetic data at Etna volcano using a genetic algorithm technique. Ann Geophys 50(1):21–30
- 14. Curtis A, Snieder R (1997) Reconditioning inverse problems using the genetic algorithm and revised parameterization. Geophysics 62:1524–1532
- 15. Dal Moro G (2008) VS and VP vertical profiling via joint inversion of Rayleigh waves and refraction travel times by means of bi-objective evolutionary algorithm. J Appl Geophys 66:15–24
- 16. Dal Moro G, Pipan M, Gabrielli P (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J Appl Geophys 61:39–55
- 17. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York, pp 1–385
- 18. Docherty P, Silva R, Singh S, Song ZM, Wood M (1997) Migration velocity analysis using a genetic algorithm. Geophys Prospect 45:865–878
- 19. Dondurur D, Pamukçu O (2003) Interpretation of magnetic anomalies from dipping dike model using inverse solution, power spectrum and Hilbert transform methods. J Balk Geophys Soc 6(2):127–136
- 20. Gay SP (1963) Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics 28(2):161–200
- 21. Göktürkler G, Balkaya Ç (2012) Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms. J Geophys Eng 9:498–507
- 22. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading, pp 1–412
- 23. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan, Ann Arbor
- 24. Hood P (1964) The Koingsberger ratio and the dipping-dyke equation. Geophys Procpect 12(4):440–456
- 25. Keskin I, Korkmaz S, Gedik I, Ateş M, Gök L, Küçükmen M, Erkal T (1989) Geology of Bayburt and Surrounding Areas. MTA Geol. Prosp. Div, Ankara
- 26. Khurana KK, Rao SVS, Pal PC (1981) Frequency domain least squares inversion of thick dike magnetic anomalies using Marquardt algorithm. Geophysics 46:1745–1748
- 27. Marquardt DW (1963) An algorithm for least squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441
- 28. Montesinos FG, Arnoso J, Vieira R (2005) Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands). Int J Earth Sci (Geol Rundsch) 94:301–316
- 29. Montesinos FG, Blanco-Montenegro I, Arnoso J (2016) Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm. Phys Earth Planet Inter 253:74–87
- 30. Nabighian MN, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Peirce JW, Phillips JD, Ruder E (2005) The historical development of the magnetic method in exploration. Geophysics 70(6):33nd–61nd
- 31. Pujol J (2007) The solution of nonlinear inverse problems and the Levenberg–Marquardt method. Geophysics 72(4):W1–W16
- 32. Radhakrishna Murthy IV, Visweswara Rao C, Gopalakrishna G (1980) A gradient method for interpreting magnetic anomalies due to horizontal circular cylinders, infinite dykes and vertical steps. Proc Earth Planet Sci 89:31–42
- 33. Raju DChV (2003) LIMAT: a computer program for least-squares inversion of magnetic anomalies over long tabular bodies. Comput Geosci 29:91–98
- 34. Ram Babu HV, Subrahmanyam AS, Atchuta Rao D (1982) A comparative study of the relation figures of magnetic anomalies due to two-dimensional dike and vertical step models. Geophysics 47:926–931
- 35. Rao BSR, Radhakrishna Murthy IV, Visweswara Rao C (1973) Two methods for computer interpretation of magnetic anomalies ofdikes. Geophysics 38(4):710–718
- 36. Roeva O, Fidanova S, Paprzyeki M (2013) Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: Proceedings of the federated conference on computer science and information systems, p 371–376
- 37. Sen M, Stoffa PL (1995) Global optimization methods in geophysical inversion, advances in exploration geophysics, 4th edn. Elsevier, Amsterdam, pp 1–281
- 38. Stoffa PL, Sen MK (1991) Nonlinear multiparameter optimization using genetic algorithms: inversion of plane-wave seismograms. Geophysics 56:1794–1810
- 39. Tarantola A (2005) Inverse problem theory and model parameter estimation. SIAM, Philadelphia
- 40. Won IJ (1981) Application of Gauss’s method to interpretation of magnetic anomalies of dipping dikes. Geophysics 46:211–215
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eb63203-f79f-46c9-9cf7-325e93cfe3c8