PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of heat transfer and aerodynamic drag of the radiator with lamellar split finning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Promising cooling systems for high-power electronic elements are those based on vapor chambers and heat pipes which allow for the local heat flow to be dispersed from the electronic element to a larger surface area of the vapor chamber or the heat pipe. To reduce the thermal resistance of the cooling system, a finned radiator is installed on the outer surface of the vapor chamber or heat pipe. The authors propose a new design of the radiator which increases the heat transfer efficiency. The paper presents results of numerical simulation of heat transfer and aerodynamic resistance of the heat transfer surface with lamellar-split finning. The comparative analysis of heat transfer and aerodynamics was carried out for three types of radiators: with lamellar smooth finning, with lamellar split finning and with the sections of split finning rotated 30◦ against the air flow. It is shown that cutting the fins and rotating the split sections leads to an increase in heat transfer intensity and increase in aerodynamic resistance. The obtained results may be useful in the design of cooling systems for computer processors, power amplifiers for transmitting modules, energy-saving solid-state light sources, etc.
Rocznik
Strony
67--93
Opis fizyczny
Bibliogr. 74 poz., rys., wykr., wz.
Twórcy
  • National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Heat-and-Power Engineering Department, 37 Peremohy Av., 03056, Kyiv, Ukraine
  • National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Heat-and-Power Engineering Department, 37 Peremohy Av., 03056, Kyiv, Ukraine
  • National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Heat-and-Power Engineering Department, 37 Peremohy Av., 03056, Kyiv, Ukraine
  • National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Heat-and-Power Engineering Department, 37 Peremohy Av., 03056, Kyiv, Ukraine
Bibliografia
  • [1] Bogatin E.: Chip packaging: Thermal requirements and constraints. In: Roadmaps of Packaging Technology (D. Potter and L. Peters, Eds.), (Chap. 6). Integrated Circuit Engineering Corporation, 1997, 6-1–6-32. http://smithsonianchips.si.edu/ice/cd/PKG_BK/CHAPT_06.PDF
  • [2] Lin Wei-Keng.: Theoretical derivation of junction temperature of package chip, In: Electronics Cooling, Chap. 8, (S.M. Sohel Murshed, Ed.),. 2016, 151–171.
  • [3] Chernyshev A.A.: Fundamentals of Reliability of Semiconductor Devices and Integrated Circuits. Radio i Svyaz, Moscow 1988 (in Russian).
  • [4] Rotkop L.L., Spokoynyy Yu.Ye.: Thermal Management in the Design of Radioelectronic. Sovetskoye Radio, Moscow 1976 (in Russian).
  • [5] Dul‘nev G.N.: Heat and mass transfer in radioelectronic equipment. In: Design and Production of Radio Equipment. Vysshaya Shkola, Moscow 1984 (in Russian).
  • [6] Wei J.: Challenges in cooling design of CPU packages for high-performance servers. Heat Transfer Eng. 29(2008), 2, 178–187, https://doi.org/10.1080/01457630701686727
  • [7] Nakayama W.: Heat in computers: Applied heat transfer in information technology. J. Heat Trans.-T ASME 136(2014), 1, 013001-1–013001-22. https://doi.org/10.1115/1.4025377
  • [8] Sullivan O., Alexandrov B., Mukhopadhyay S., Kumar S.: 3D compact model of packaged thermoelectric coolers. J. Electron. Packaging 135(2013), 3, 031006-1–031006-7, https://doi.org/10.1115/1.4024653
  • [9] Jubear A.J., Al-Hamadani Ali A.F.: The effect of fin height on free convection heat transfer from rectangular fin array. Int. J. Recent Sci. Res. (IJRSR) 6(2015), 7, 5318–5323, https://www.researchgate.net/publication/280933185
  • [10] Jubear A.J.: An experimental investigation of heat transfer enhancement for vertical interrupted fin in free convection. Int. J. Recent Sci. Res. (IJRSR) 8(2017), 6,17279–17284, http://dx.doi.org/10.24327/ijrsr.2017.0806.0321
  • [11] Goshayeshi H.R, Ampofo F.: Heat transfer by natural convection from a vertical and horizontal surfaces using vertical fins. Energy Power Eng. (EPE) 1(2009), 2, 85–89. http://dx.doi.org/10.4236/epe.2009.12013
  • [12] Haghighi S.S., Goshayeshi H.R., Safaei Mohammad Reza: Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. Int. J. Heat Mass Tran. 125(2018), 640–647. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.122
  • [13] Pismennyi Ye.N., Rogachev V.A., Bosaya N.V.: Investigation into efficiency characteristics of a new heat transfer surface with mesh finning under free convection. Heat Transf. Res. 30(1999), 1, 30–35.
  • [14] Chen CH., Wang C.-C.: A novel trapezoid fin pattern applicable for air-cooled heat sink. Heat Mass Transfer 51(2015), 11, 1631–1637, https://doi.org/10.1007/s00231-015-1666-4
  • [15] Chingulpitak S., Chimres N., Nilpueng K., Wongwises S.: Experimental and numerical investigations of heat transfer and flow characteristics of cross-cut heat sinks. Int. J. Heat Mass Tran. 102(2016), 142–153, https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.098
  • [16] Teerstra P., Yovanovich M.M., Culham J.R.: Analytical forced convection modeling of plate fin heat sinks. J. Electron. Manuf. 10(2000), 4, 253–261, https://doi.org/10.1109/STHERM.1999.762426
  • [17] Yu X., Feng J., Feng Q., Wang Q.: Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl. Therm. Eng. 25(2005), 1-2, 173–182. https://doi.org/10.1016/j.applthermaleng.2004.06.016
  • [18] Shih C.J., Liu G.C.: Optimal design methodology of plate-fin heat sinks for electronic cooling using entropy generation strategy. IEEE T COMP PACK T 27(2004), 3, 551–559, https://doi.org/10.1109/TCAPT.2004.831812
  • [19] Bulut M., Kandlikar S.G., Sozbir N.: A review of vapor chambers. Heat Transfer Eng. 40(2019), 19, 1551–1573 , https://doi.org/10.1080/01457632.2018.1480868
  • [20] Reyes M., Alonso D., Arias J.R., Velazquez A.: Experimental and theoretical study of a vapour chamber based heat spreader for avionics applications. Appl. Therm. Eng. 37(2012), 51–59, http://dx.doi.org/10.1016/j.applthermaleng.2011.12.050
  • [21] Wang J.-C., Wang R.-T., Chang T.-L., Hwang D.S.: Development of 30 Watt high-power LEDs vapor chamber-based plate. Int. J. Heat Mass Tran. 53(2010), 19-20, 3990–4001, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.018
  • [22] Reay D.A., Kew P.A., McGlen R.J.: Heat Pipe: Theory, Design and Applications (6th Edn.) Buterworth-Heinemann Amsterdam 2014.
  • [23] Vasil’ev L.L. Jr, Grakovich L.P., Dragun L.A., Zhuravlev A.S., Olekhnovich V.A., Rabetskii M.I.: System for cooling of electronic components. J. Eng. Phys. Thermophys. 90(2017), 1, 95–101, http://dx.doi.org/10.1007/s10891-017-1543-8
  • [24] Mochizuki M., Nguyen T., Mashiko K., Saito Y., Nguyen T., Wuttijumnong V.: A review of heat pipe application including new opportunities. Front. Heat Pipes 2(2011), 013001. https://doi.org/10.5098/fhp.v2.1.3001
  • [25] Nikolaienko Yu.E.: Schematics of the architecture of heat rejection from functional modules of a computer with the help of two-phase heat-transfer devices. Upravlyayushchie Sistemy i Mashiny 2(2005), 29–36, http://ela.kpi.ua/handle/123456789/16362 URL:http://www.scopus.com/inward/record.url?eid=2-s2.0-33644653599&partnerID=MN8TOARS
  • [26] Faghri A.: Heat pipes: Review, opportunities and challenges. Front. Heat Pipes 5(2014), 1-48. http://dx.doi.org/10.5098/fhp.5.1
  • [27] Kravets V.Yu., Nikolaenko Yu.E., Nekrashevich Ya.V.: Experimental studies of heat-transfer characteristics of miniaturized heat pipes. Heat Transf. Res. 38(2007), 6, 553–563, http://dx.doi.org/10.1615/HeatTransRes.v38.i6.70
  • [28] Nikolaenko Yu.E., Rotner S.M.: Using laser radiation for the formation of capillary structure in flat ceramic heat pipes. Tech. Phys. Lett. 38(2012), 12, 1056–1058. http://dx.doi.org/10.1134/S1063785012120085 http://www.scopus.com/inward/record.url?eid=2-s2.0-84872154463&partnerID=MN8TOARS
  • [29] Cai1 Q., Chen B.C, Tsai C.: Design, development and tests of highperformance silicon vapor chamber. J. Micromech. Microeng. 22(2012), 035009, 1-9. http://dx.doi.org/10.1088/0960-1317/22/3/035009
  • [30] Pastukhov V.G., Maidanik Yu.F., Vershinin C.V., Korukov M.A.: Miniature loop heat pipes for electronics cooling. Appl. Therm. Eng. 23(2003), 1125–1135. http://dx.doi.org/10.1016/S1359-4311(03)00046-2
  • [31] Mikielewicz D., Błauciak K.: Investigation of the influence of capillary effect on operation of the loop heat pipe. Arch. Thermodyn. 35(2014), 3, 59–80. http://dx.doi.org/10.2478/aoter-2014-0021
  • [32] Kiseev V., Sazhin O.: Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid. Int. J. Heat Mass Tran. 132(2019), 557–564. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.109
  • [33] Bieliński H., Mikielewicz J.: Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side. Arch. Thermodyn. 31(2010), 4, 51–59. http://dx.doi.org/10.2478/v10173-010-0027-4
  • [34] Bielinski H., Mikielewicz J.: Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling. Arch. Thermodyn. 37(2016), 1, 3–16, http://dx.doi.org/10.1515/aoter-2016-0001
  • [35] Vasiliev L., Grakovich L.,.Rabetsky M., Zhuravlyov A., Vassiliev JR L.: Flat polymer loop thermosyphons. Arch. Thermodyn. 39(2018), 1, 75–90. http://dx.doi.org/10.1515/aoter-2018-0004
  • [36] Nemec P., Malcho M..: Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect. EPJ Web Conf. 180(2018), 02073 , 1–4. https://doi.org/10.1051/epjconf/201818002073
  • [37] Baskova O., Voropaiev G.: Investigation of flow structure and heat exchange formation in corrugatedpipes at transient Reynolds numbers. East. Eur. J. Enterp. Technol. 3(2017), 8(87), 40–45, http://dx.doi.org/10.15587/1729-4061.2017.103880
  • [38] Chernyshev A.A., Ivanov V.I., Aksenov A.I., Glushkova D.N.: Thermal management of electronic devicess. Energiya. Moscow 1980 (in Russian).
  • [39] Jonsson H., Moshfegh B.: Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks — Influence of flow bypass. IEEE T. Comp. Pack. T. 24(2001), 2, 142–149. http://dx.doi.org/10.1109/6144.926376
  • [40] El-Sayed S.A., Mohamed S.M., Abdel-latif A.M., Abouda A.-H. E.: Investigation of turbulent heat transfer and in longitudinal rectangular-fin arrays of d geometries and shrouded fin array. Exp. Therm. Fluid Sci. 26(2002), 8, 879–900, http://dx.doi.org/10.1016/S0894-1777(02)00159-0
  • [41] Kim K.-Y., Moon M.-A.: Optimization of a stepped circular pin-fin array to enhance heat transfer performance. Heat Mass Transfer 46(2009), 63–74. https://doi.org/10.1007/s00231-009-0544-3
  • [42] Trofimov V.E., Pavlov A.L., Storozhuk A.S.: CFD-simulation of impact jet radiator for thermal testing of microprocessors. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature (2018), 5-6, 30–36, http://dx.doi.org/10.15222/TKEA2018.5-6.30 (in Russian).
  • [43] Yicang Huang, Shengnan Shen, Hui Li, Yunjie Gu.: Improved thermal design of fin heat sink for high-power LED lamp cooling. In: Proc. 17th Int. Conf Electronic Packaging Technology (ICEPT) IEEE, 2016, 1069–1074, https://doi.org/10.1109/ICEPT.2016.7583311
  • [44] Mendonca Royston Marlon, Yalamarty Sai Sharan, Kini Chandrakant R.: Numerical analysis of heat sink for LED lighting modules. Int. J. Res. Eng. Technol. (IJRET) 4(2015), 03, 142–150. https://doi.org/10.15623/ijret.2015.0403025
  • [45] Li J., Shi Z.-S.: 3D numerical optimization of a heat sink base for electronics cooling. Int. Commun. Heat Mass 39(2012), 2, 204–208. https://doi.org/10.1016/j.icheatmasstransfer.2011.12.001
  • [46] Chen, C.-H., Wang, C.-C.: A novel trapezoid fin pattern applicable for aircooled heat sink. Heat Mass Transfer 51(2015), 11, 1631–1637, https://doi.org/10.1007/s00231-015-1666-4
  • [47] Chen H.-L., Wang C.-C.: Analytical analysis and experimental verification of trapezoidal fin for assessment of heat sink performance and material saving. Appl. Therm. Eng. 98(2016), 203–212, http://dx.doi.org/10.1016/j.applthermaleng.2015.11.131
  • [48] Voropaev G.A., Dimitrieva N.F.: Simulation of the turbulent-energy redistribution in a diluted polymer solution. J. Eng. Phys. Thermophys. 86(2013), 1, 131–144. https://doi.org/10.1007/s10891-013-0813-3
  • [49] Voropayev G.A., Rozumnyuk N.V.: Numerical simulation of turbulent flows over compliant surfaces. Int. J. Fluid Mech. Res. 30(2003), 1, 91–108, https://doi.org/10.1615/InterJFluidMechRes.v30.i1.9
  • [50] Pismennyi E.N., Terekh A.M., Rogachev V.A., Burlei V.D., Rudenko A.I.: Calculation of convective heat transfer of plane surfaces with wire-net finning immersed in a cross-flow. Heat Transfer Research 36 (2005), 1-2, 39–46. https://doi.org/10.1615/HeatTransRes.v36.i12.60
  • [51] Legkii V.M., Rogachev V.A.: Local heat transfer on the entrance segment of a tube with a sharp inlet edge. 2. Correction for the entrance segment under turbulent boundary layer conditions. J. Eng. Phys. Thermophys. 65(1993), 2, 722–725, https://doi.org/10.1007/BF00861532
  • [52] Legkii V.M., Rogachev V.A.: Local heat transfer on the entrance segment of a tube with a sharp inlet edge. 1. Nature and behavior of heat transfer intensity extrema. J. Eng. Phys. Thermophys. 65(1993), 2, 715–721. https://doi.org/10.1007/BF00861531
  • [53] Legkij V.M., Rogachev V.A.: Local heat exchange in the starting segment of a pipe with a sharp front edge. 1. The nature and behaviour of heat exchange intensity extremums. Inzhenerno-Fizicheskii Zhurnal 65(1993), 2, 131–138 (in Russian).
  • [54] Legkij V.M., Rogachev V.A.: Local heat exchange in the starting segment of a pipe with a sharp front edge. 2. Allowing for the starting segment under the turbulent flow conditions in the boundary layer. Inzhenerno-Fizicheskii Zhurnal, 65(1993), 2, 139–143, (in Russian).
  • [55] Pismenniy Ye.N., Burley V.D., Terekh A.M., Baranyuk A.V., Tsvyashchenko Ye.V.: Heat transfer of flat lamellar surfaces with split finning under forced convection. Promyshlennaya teplotekhnika 27(2005), 4, 11–16 (in Russian).
  • [56] Pismenniy Ye.N., Terekh A.M., Rogachov V.A., Burley V.D., Baranyuk A.V.: Aerodynamic resistance of lamellar surfaces with split fins in forced convection. Promyshlennaya teplotekhnika 28(2006), 4, 29–33 (in Russian).
  • [57] Bystrov Yu.A., Isayev S.A., Kudryavtsev N.A., Leont’yev A.I.: Numerical Simulation of Vortex Intensification of Heat Exchange in Tube Stacks. St. Petersburg: Sudostroyeniye 2005.
  • [58] Tang Y., Lin L., Zhang S., Zeng J., Tang K., Chen G., Yuan W.: Thermal management of high-power LEDs based on integrated heat sink with vapor chamber. Energ. Convers. Manage. 151(2017), 1–10. http://dx.doi.org/10.1016/j.enconman.2017.08.087
  • [59] Pismennyi E.N., Bagrii P.I., Terekh A.M., Semenyako A.V.: Optimization of the ribbing of a new heat exchange surface of flat-oval tubes. J. Eng. Phys. Thermophys. 86(2013), 5, 1066–1071. https://doi.org/10.1007/s10891-013-0929-5
  • [60] Naphon P.: CPU cooling by vapor chamber with R-141b as working fluid. Asian J. Eng. Technol. 02(2014), 2, 161–167.
  • [61] Smitka M., Malcho M., Nemec P., Kolkova Z.: Use of LHP for cooling power electronic components. EPJ Web Conf. 45(2013), 01046-1– 01046-4. http://dx.doi.org/10.1051/epjconf/20134501046
  • [62] Te Riele G,J., Wits W.W.: Heat pipe array for planar cooling of rotating radar systems. Joint Conf. 19th IHPC and 13th IHPS, Pisa, June 10-14, 2018, 1–8. https://www.researchgate.net/publication/326587888_Heat_pipe_array_for_planar_cooling_of_rotating_radar_systems
  • [63] Wang J.-C., Wang R.-T., Chang T.-L., Hwang D.-S.: Development of 30 Watt high-power LEDs vapor chamber-based plate. Int. J. Heat Mass Tran. 53(2010), 19- 20, 3990–4001, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.01
  • [64] Nikolaenko Yu.E., Kravets V.Yu., Naumova A.N., Baranyuk A.V.: Development of the ways to increase the lighting energy efficiency of living space. Int. J. Energ. Clean Env. 18(2017), 3, 275–285. https://doi.org/10.1615/InterJEnerCleanEnv.2018021641
  • [65] Jong-Soo K., Jae-Young B., Eun-Pil K.: Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevicetype vapor chamber heat pipe. J. Korean Soc. Marine Eng. 39(2015), 8, 801–806. http://dx.doi.org/10.5916/jkosme.2015.39.8.801
  • [66] Nikolaenko T.Yu., Nikolaenko Yu.E.: New circuit solutions for the thermal design of chandeliers with light emitting diodes. Light Eng. 23(2015), 3, 85–88. http://www.scopus.com/inward/record.url?eid=2-s2.0-84966507707&partnerID=MN8TOARS
  • [67] Prisniakov K., Marchenko O., Melikaev Yu., Kravetz V., Nikolaenko Yu., Prisniakov V.: About the complex influence of vibrations and gravitational fields on serviceability of heat pipes in composition of the space-rocket systems. Acta Astronaut. 55(2004), 3-9, 509–518, http://dx.doi.org/10.1016/j.actaastro.2004.05.005.
  • [68] Marchenko O., Prisniakov K., Prisniakov V., Kravez V., Nikolaenko Yu.: Influence of Non-Stationary Conditions on Reliability of Space Systems with Heat Pipes under the Effect of Vibrations. In Proc. 55th Int. Astronautical Cong. IAF, IAA, IISL, Vancouver, Oct. 4-8, 2004, 4(2004), 2301–2311, http://dx.doi.org/10.2514/6.IAC-04-I.P.04
  • [69] Pysmennyy Ye.M., Epik E. Ya., Terekh O.M., Rudenko O.I., Baranyuk O.V.: Peculiarities of the flow on the flat split rfins of cooling elements of the radio electronic equipment. Res. Bull. National Technical University of Ukraine Igor Sikorsky Kyiv Politechnic Institute 3(53) 2007 (in Ukrainian).
  • [70] Li Z., Huai X., Tao Y., Chen H.: Effect of thermal property variations on the liquid flow and heat transfer in microchanel heat sinks. Appl. Therm. Eng. 27(2007), 17–18, 2803–2814, https://doi.org/10.1016/j.applthermaleng.2007.02.007
  • [71] Diyev M.D., Kolesnikova A.A.: Numerical simulation of intensification of turbulent heat exchange in a rectangular channel using Fluent CFD package. In: Problems of gas dynamics and heat and mass transfer in power plants; Vol. 2. Proc. XVI School-Seminar of Young Scientists and Specialists, St. Petersburg 2007, 362–365 (in Russian).
  • [72] Frost U., Moulden T., Eds.: Turbulence. Principles and Applications. Mir, Moscow 1980.
  • [73] Jaffal H.M., Jebur H.S., Hussein A.A.: Numerical and experimental investigations on the performance characteristics for different shapes pin fin heat sink. IJOCAAS 4(2018), 3, 330–343, https://www.researchgate.net/publication/326689809; https://ijocaas.com/wp-content/uploads/2018/07/IJOCAAS-04-03-001-June2018.pdf
  • [74] Ohadi M., Choo K., Dessiatoun S., Cetegen E.: Force-Fed Microchannels for High Flux Cooling Applications. In: Next Generation Microchannel Heat Exchangers, Chap. 2. Springer-Verlag, New York 2013, 43–60, DOI: 10.1007/978-1-4614-0779-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eb2b1ac-8c89-454b-bad7-205c3c7eb6ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.