PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody określania struktury polisacharydów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Methods for determining polysaccharides structure
Języki publikacji
PL
Abstrakty
EN
Sequencing of polysaccharides is difficult to achieve because of the heterogeneous nature of the polysaccharide structure, high molecular weight (the size of a polysaccharide varies between approximately 16,000 and 16,000,000 daltons (Da)), and polydispersity of the polymer chains. The following information is essential to determine the primary structure of a polysaccharide: • monosaccharide composition: nature and molar ratios of the monosaccharide building blocks; • relative configuration of monosaccharides: d or l; • anomeric configuration: α- or β-configuration of the glycosidic linkage; • ring size: presence and distinction of furanosidic and pyranosidic rings; • linkage patterns: linkage positions between the monosugars and branches; • sequences of monosaccharide residues in the repeating units; • substitutions: position and nature of OH–modifications, such as O–phosphorylation, acetylation, O-sulfation, etc.; • molecular weight and molecular weight distribution. A polysaccharide extracted from plant materials or food products is usually purified before being subjected to structural analysis. The first step of characterizing a polysaccharide is the determination of its purity, which is reflected by its chemical composition, including total sugar content, level of uronic acids, proteins, ash, and moisture of the preparation. The second step is the determination of monosaccharide composition, which will unveil structural information such as the number of monosaccharides present in the polysaccharide and how many of each sugar unit. NMR spectroscopy has become the most powerful and noninvasive physicochemical technique for determining polysaccharide structures. It can provide detailed structural information of carbohydrates, including identification of monosaccharide composition, elucidation of α- or β-anomeric configurations, establishment of linkage patterns, and sequences of the sugar units in oligosaccharides and/or polysaccharides. Monosaccharide composition can be determined also by analysis of totally acid hydrolyzed polysacharide using high performance liquid chromatography (HPLC) or gas chromatography (GC). The ring size and glycosidic linkage positions of sugar units in a polysaccharide could be established by methylation analysis and/or cleavage reduction. The anomeric configuration is conventionally determined by oxidation, and this method can be combined with mass spectrometry to obtain more structural information.
Rocznik
Strony
299--318
Opis fizyczny
Bibliogr. 59 poz., rys., schem.
Twórcy
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] J.A. de Vries, F.M. Rombouts, A.G.J. Voragen, W. Pilnik, Carbohydr. Polym., 1984, 4, 89.
  • [2] B. Lindberg, B. Lindqvist, J. Lönngren, D.A. Powell, Carbohydr. Res., 1980, 78, 111.
  • [3] J. Azeredo, R. Oliveira, V. Lazarova, Wat. Sci. Tech., 1998, 37, 367.
  • [4] M. Kuzma, B. Clack, J. Edwards, R. Tylingo, J. Samaszko, J. Madaj, Carbohydr. Res., 2012, 348, 84.
  • [5] Y. Wang, Z. Cheng, J. Mao, M. Fan, X. Wu, Carbohydr. Polym., 2009, 77, 713.
  • [6] X. Wang, H.L. Ma, Chin. Food Sci. Technol., 2007, 9, 99.
  • [7] L.A. de Weger, B. Jann, K. Jann, B. Lugtenberg, J. Bacteriol., 1987, 169, 1441.
  • [8] L.A. de Weger, G.V. Bloemberg, T. van Wezel, M. van Raamsdonk, D.C. Glandorf, J. van Vuurde, K. Jann, B.J. Lugtenberg J. Bacteriol., 1996, 178, 1955.
  • [9] S.R. Sudhamani, R.N. Tharanthan, M.S. Prasad, Carbohydr. Polym., 2004, 56, 423.
  • [10] S. Omarsdottir, B.O. Petersen, B.S. Paulsen, A. Togola, J.Ø. Duus, E.S. Olafsdottir, Carbohydr. Res., 2006, 341, 2449.
  • [11] D.I. Grice, J.C. Wilson, Analytical approaches towards the structural characterization of microbial wall glycopolymers, [w:] Microbial Glycobiology, A. Moran, P.J. Brennan, M. von Itzstein (Red.) , San Diego, CA, Academic Press 2010.
  • [12] F.N. Lamari, R. Kuhn, N.K. Karamanos, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 793, 15.
  • [13] J.Ø. Duus, C.H. Gotfredsen, C. Bock, Chem. Rev., 2000, 100, 4589.
  • [14] J.C. Michalski, Methods on Glycocojugates, A. Verbert (Red.), Harwood Academic Publishers, 1995.
  • [15] J.H. Pazur, Carbohydrate Analysis, M.F. Chaplin, J.F. Kennedy (Red.), Oxford University Press, 1994.
  • [16] J. Szafranek, Zagadnienia Biofizyki Współczesnej, 1988, 13, 129.
  • [17] D. Asa, American Laboratory, 2006, 38, 16.
  • [18] M.M. Bernárdez, J.M. Miguèlez, J.G. Queijeiro, J. Food Comp. Anal., 2004, 17, 63.
  • [19] R. Slimestad, I.M. Vågen, J. Chromatogr. A, 2006, 1118, 281.
  • [20] S.I. Hakomori, J. Biochem. (Tokyo), 1964, 55, 205.
  • [21] J. Ciucanu, F. Kerek, Carbohydr. Res., 1984, 131, 209.
  • [22] P. Prehm, Carbohydr. Res., 1980, 78, 372.
  • [23] R. Kuhn, H. Trischmann, I. Löw, Angew. Chem., 1955, 67, 184.
  • [24] M.A. Olsthoorn, B.O. Petersen, S. Schlecht, J. Haverkamp, K. Bock, J.E.T. Oates, O. Holst, J. Biol. Chem., 1998, 273, 3817.
  • [25] Y.A. Knirel, E. Vinogradov, N. Jimenez, S. Merino, J.M. Tomas, Carbohydr. Res., 2004, 339, 787.
  • [26] H. Masoud, E. Altman, J.C. Richards, J.S. Lam, Biochemistry, 1994, 33, 10568.
  • [27] E. Vinogradov, K. Drift, J.E. Thomas-Oates, S. Meshkov, H. Brade, O. Holst, Eur. J. Biochem., 1999, 261, 629.
  • [28] T.J. Waeghe, A.G. Darvill, M. McNeil, P. Albersheim, Carbohydr. Res., 1983, 123, 281.
  • [29] A. Tacken, H. Brade, Carbohydr. Res., 1986, 149, 263.
  • [30] D.H. Shaw, M.J. Hart, O. Lüderitz, Carbohydr. Res., 1992, 231, 83.
  • [31] E. Jansson, A.A. Lindberg, B. Lindberg, R. Wollin, Eur. J. Biochem., 1981, 115, 571.
  • [32] V.M.F. Gonçalves, A. Reis, M.R.M. Domingues, J.A. Lopes-da-Silva, A.M. Fialho, L.M. Moreira, I. Sá-Correia, M.A. Coimbra, Carbohydr. Polym., 2009, 77, 10.
  • [33] Z. Kaczyński, J. Gajdus, H. Dziadziuszko, P. Stepnowski, J. Pharm. Biochem. Anal., 2009, 50, 679.
  • [34] J. Szafranek, J. Kumirska, M. Czerwicka, D. Kunikowska, H. Dziadziuszko, R. Głośnicka, FEMS Immunol. Med. Microbiol., 2006, 48, 223.
  • [35] J.C. Michalski, Methods on Glycocojugates, A. Verbert (Red.), Harwood Academic Publishers, 1995.
  • [36] T.S. Stewart, P.B. Mendershausen, C.E. Ballou, Biochemistry, 1968, 7, 1843.
  • [37] B.L. Lindberg, J. Lönngren, S. Svensson, Advances in Carbohydrate Chemistry and Biochemistry, 1975, 31, 185.
  • [38] A.O. Chizhov, A. Dell, H.R. Morris, S.M. Haslam, R.A. McDowell, A.S. Shashkov, N.E. Nifant’ev, E.A. Khatuntseva, A.I. Usov, Carbohydr. Res., 1999, 320, 108.
  • [39] J. Kocurek, C.E. Ballou, J. Bacteriol., 1969, 100, 1175.
  • [40] J. Kumirska, J. Szafranek, M. Czerwicka, M. Gołębiowski, M. Paszkiewicz, H. Dziadziuszko, D. Kunikowska, P. Stepnowski, Carbohydr. Res., 2008, 343, 1120.
  • [41] H. Nanakai, W. Hashimoto, H. Miki, S. Kawai, K. Murata, Appl. Environ. Microbiol., 1999, 65, 2520.
  • [42] K. Kaluarachchi, C.A. Bush, Anal. Biochem., 1989, 179, 209.
  • [43] H. Roth, S. Segal, D. Bertoli, Anal. Biochem., 1965, 10, 35.
  • [44] T. Lipiński, Ch. Jones, X. Lemercinier, A. Korzeniowska-Kowal, M. Strus, J. Rybka, A. Gamian, P. B. Heczko, Carbohydr. Res., 2003, 338, 605.
  • [45] G.J. Gerwig, J.P. Kamerling, J.F.G. Vligenthart, Carbohydr. Res., 1979, 77, 1.
  • [46] K. Leontein, B. Lindberg, J. Lönngren, Carbohydr. Res., 1978, 62, 359.
  • [47] H. Bretting, G. Jacobs, I. Benecke, W. Konig, J. Thiem, Carbohydr. Res., 1985, 77, 225.
  • [48] J. Heinrich, W.A. König, H. Bretting, P. Mischnick, Carbohydr. Res., 1997, 299, 1.
  • [49] W.S. York, S. Hantus, P. Albersheim, A.G. Darvill, Carbohydr. Res., 1997, 300, 199.
  • [50] A.S. Shashkov, G.M. Lipkind, Y.A. Knirel, N.K. Kochetkov, Magnet. Reson. Chem. 1988, 26, 735.
  • [51] L. Lindqvist, P.E. Jansson, J. Chromatogr. A., 1997, 769, 253.
  • [52] L. Yang, L.M. Zhang, Carbohydr. Polym., 2009, 76, 349.
  • [53] M. Fukuda, F. Egami, G. Hämmerling, O. Lüderitz, G. Bagdian, A.M. Staub, Eur. J. Biochem., 2005, 20, 438.
  • [54] J.H. Pazur, Carbohydrate Analysis, M.F. Chaplin, J.F. Kennedy (Red.), Oxford University Press, 1994.317
  • [55] T.R. Neu, T. Dengler, B. Jann, K. Poralla, J. Gen. Microbiol., 1992, 138, 2531.
  • [56] A.S. Rao, N. Roy, Carbohydr. Res., 1979, 76, 215.
  • [57] J. Ganeshapillai, E. Vinogradov, J. Rousseau, J.S. Weese, A. Monteiro, Carbohydr. Res., 2008, 343, 703.
  • [58] J. Wingender, T.R. Neu, H-C. Flemming, Microbial Extracellular Polymeric Substances Characterization, Structure and Function Springer (Red.), 1999.
  • [59] S.W. Cui, Food Carbohydrates Chemistry, Physical Properties, and Applications, Chapter 3. Structural Analysis of Polysaccharides, S.W. Cui (Red.), CRC, 2005.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eae4379-c44d-4e3e-abbc-dc2b8fca6a0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.