PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement of sensitivity of solar blind UV cameras to solar light

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar blind UV cameras are not theoretically supposed to be sensitive to solar light. However, there is practically always some sensitivity to solar light. This limited solar sensitivity can sometimes make it impossible to detect the weak emission of a corona target located on the solar background. Therefore, solar sensitivity is one of the crucial performance parameters of solar blind UV cameras. However, despite its importance, the problem of determining solar sensitivity of solar blind UV cameras has not been analysed and solved in the specialized literature, so far. This paper presents the concept (definition, measurement method, test equipment, interpretation of results) of measuring solar sensitivity of solar blind UV cameras.
Rocznik
Strony
45--58
Opis fizyczny
Bibliogr. 32 poz., fot., rys., tab., wykr.
Twórcy
  • Military University of Technology, Institute of Optoelectronics, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  • INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
autor
  • INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Bibliografia
  • [1] UViRCO Technologies. https://www.uvirco.com (2020).
  • [2] OFIL Systems - Daytime Corona Cameras. https://www.ofilsystems.com (2020).
  • [3] Zhejiang ULIRVISION Technology Co., LTD. https://www.ulirvision.co.uk (2020).
  • [4] Olip Systems Inc. https://www.olipsystems.com (2020).
  • [5] Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne. https://www.sonel.pl (2020).
  • [6] ICI Infrared Cameras Inc. https://www.infraredcameras.com (2020).
  • [7] Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras’ sensitivity. Opto-Electron. Rev. 27, 378–384 (2019). https://doi.org/10.1016/j.opelre.2019.11.009
  • [8] Cheng, H. et al. Performance characteristics of solar blind UV image intensifier tube. in Proc. SPIE – International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Imaging Detectors and Applications 7384 (2009). https://doi.org/10.1117/12.834700
  • [9] Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in IEEE International SAUPEC/RobMech/PRASA Conference 1–5 (2020). https://doi.org/10.1109/saupec/robmech/prasa48453.2020.9041014
  • [10] Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in Proc. SPIE – Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (2019). https://doi.org/10.1117/12.2501251
  • [11] Du Toit, N. S. Calibration of UV-sensitive camera for corona detection. (Stellenbosch University, South Africa, 2007). http://hdl.handle.net/10019.1/2920
  • [12] Pissulla, D. et al. Comparison of atmospheric spectral radiance measurements from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009). https://doi.org/10.1039/b817018e
  • [13] Clack, C. T. M. Modeling solar irradiance and solar PV power output to create a resource assessment using linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 56, 109–125 (2017). https://doi.org/10.1175/JAMC-D-16-0175.1
  • [14] G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. http://www.astm.org/cgi-bin/resolver.cgi?G173-03R20 https://doi.org/10.1520/G0173-03R20
  • [15] Tohsing, K., Klomkliang, W., Masiri, I. & Janjai, S. An investigation of sky radiance from the measurement at a tropical site. in AIP Conference Proceedings 1810, 080006 (2017). https://doi.org/10.1063/1.4975537
  • [16] Chen, H.-W. & Cheng, K.-S. A conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens. 4, 934–949 (2012). https://doi.org/10.3390/rs4040934
  • [17] Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001). https://doi.org/10.1016/S0038-092X(01)00054-8
  • [18] Gueymard, C. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. (Florida Solar Energy Center, 1995).
  • [19] Gueymard, C. A. Reference solar spectra: Their evolution, standardization issues, and comparison to recent measurements. Adv. Space Res. 37, 323–340 (2006). https://doi.org/10.1016/j.asr.2005.03.104
  • [20] TOMS Meteor-3 Total Ozone UV-Reflectivity Daily L3 Global 1 deg x 1.25 deg V008, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), TOMS Science Team, https://disc.gsfc.nasa.gov/datacollection/TOMSM3L3_008.html (2021).
  • [21] SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/smarts.html (2020).
  • [22] Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2, 000029 (2014). https://doi.org/10.12952/journal.elementa.000029
  • [23] Riordan, C. & Hulstron, R. What is an air mass 1.5 spectrum? (solar cell performance calculations). in IEEE Conference on Photovoltaic Specialists (1990). https://doi.org/10.1109/pvsc.1990.111784
  • [24] Wikipedia contributors. Air mass (solar energy). Wikipedia. https://en.wikipedia.org/wiki/Air_mass_(solar_energy) (2020).
  • [25] Ritter, M. E. The Physical Environment: an Introduction to Physical Geography. https://www.thephysicalenvironment.com (2020).
  • [26] NOAA Research. NOAA Solar Position Calculator. https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html (2020).
  • [27] Solargis. Global Solar Atlas. https://globalsolaratlas.info/download/world (2020)
  • [28] Blanc, P. et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 110, 561–577 (2014). https://doi.org/10.1016/j.solener.2014.10.001
  • [29] Class ABB Small Area Solar Simulators. Newport Corporation. https://www.newport.com/f/small-area-solar-simulators (2020).
  • [30] Dai, C., Wu, Z., Qi, X., Ye, J. & Chen, B. Traceability of spectro-radiometric measurements of multiport UV solar simulators. in Proc. SPIE - International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Applications 8910, 8910-2 (2013). https://doi.org/10.1117/12.2030753
  • [31] Christiaens, F. & Uhlmann, B. Guidelines for Monitoring UV Radiation Sources. (COLIPA, 2007).
  • [32] Qualitätsmanagement-Handbuch, Abteilung 7, Physikalisch-Technische Bundesanstalt (PTB), https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilu ng_7/QMH_Abt7_KAP3_1_A16_a.pdf (2020). [in German]
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eac80cf-77ba-487e-ac1b-c3cd5869f11b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.