PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct torque control of induction machine fed by 5-level flying capacitor inverter with active balancing strategy for electric vehicle application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
zpośrednie sterowanie momentem obrotowym maszyny indukcyjnej zasilanej przez 5-poziomowy latający falownik kondensatorowy z aktywną strategią równoważenia do zastosowania w pojazdach elektrycznych
Języki publikacji
EN
Abstrakty
EN
In electric vehicle (EV), control strategies play a key role in vehicle dynamic behavior and stability. The traction chain considered in this article consists of a multilevel inverter, an induction machine (IM) and open differential. The proposed control strategy is based on DTC drive. Moreover, In this paper we present, on the one hand, the contribution provided by 5-level flying capacitor inverter with active balancing in DTC control and, on the other hand, the application of the global structure proposed with 7 degrees of fredom (7-DOF) EV model. Computer simulations were performed using the Matlab/Simulink environment to evaluate the performance of the proposed control.
PL
W pojeździe elektrycznym (EV) strategie sterowania odgrywają kluczową rolę w dynamicznym zachowaniu i stabilności pojazdu. Łańcuch trakcyjny rozważany w tym artykule składa się z falownika wielopoziomowego, maszyny indukcyjnej (IM) oraz otwartego mechanizmu różnicowego. Zaproponowana strategia sterowania oparta jest na napędzie DTC. Ponadto w artykule przedstawiono z jednej strony wkład wniesiony przez 5-poziomowy falownik latającego kondensatora z aktywnym równoważeniem w sterowaniu DTC, a z drugiej strony zastosowanie globalnej struktury zaproponowanej z 7 stopniami swobody (7 -DOF) Model EV. Przeprowadzono symulacje komputerowe z wykorzystaniem środowiska Matlab/Simulink w celu oceny działania proponowanego sterowania.
Rocznik
Strony
145--154
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • IRECOM Laboratory, Department of Electrical Engineering, Faculty of Electrical Engineering
autor
  • IRECOM Laboratory, Department of Electrical Engineering, Faculty of Electrical Engineering
  • IRECOM Laboratory, Department of Electrical Engineering, Faculty of Electrical Engineering
  • IRECOM Laboratory, Department of Electrical Engineering, Faculty of Electrical Engineering
Bibliografia
  • [1] Lokriti A., Zidani Y., Doubabi S., Fuzzy logic control contribution to the direct torque and flux control of an induction machine, IEEE International Conference on Ouarzazate, 7-9 April 2011.
  • [2] Ouboubker L., Khafallah M., Lamterkati J., Chikh K., Comparison between DTC using a two-level inverters and DTC using a three level inverters of Induction Motor, 2014 International Conference on Multimedia Computing and Systems, Marrakech, Morocco, 2014.
  • [3] Priya S., Suresh A., Rashmi M. R., GCMT-249 Investigation and Performance Analysis of Direct Torque Control of 3phase Induction Motor using 7 Level Neutral Point Clamped Multilevel Inverter, Indian J. Sci.Technol., vol. 9, pp. 1-7, 2016.
  • [4] Bouarfa A., Bodson M., Fadel M., A fast active-balancing method for the 3-phase multilevel ying capacitor inverter derived from control allocation theory, International Federation of Automatic Control, Papers On Line 50-1, (2017), 2113–2118.
  • [5] Norambuena, M., Lezana, P., Rodriguez, J., A simple modulation strategy for a Flying Capacitor Converter using Predictive Control, IEEE IECON, Florence, Italy. 2016.
  • [6] Tachon, O., Fadel M., Meynard T., Control of series multicell converters by linear state feedback decoupling., European conference on power electronics and applications, Trondheim, Norway, vol. 1. p.588-1.593, 1997.
  • [7] Martins C A., Controle directe du couple d'une machine asychrone alimentée par un convertisseur multiniveau a frequence imposée, thèse de doctorat, Institut national polytechnique, Toulouse, France, 2000.
  • [8] Nordin N. M., Idris N. R. N., N. a. Azli, Direct torque Control with 5-level cascaded H-bridge multilevel inverter for induction machines, IECON 2011 - 37th Annu. Conf. IEEE Ind. Electron. Soc, pp. 4691-4697, 2011.
  • [9] Tarusan S. A. A., Jidin A., Jamil M. L. M., Abdul Karim K, Sutikno T., A review of direct torque control development in various multilevel inverter applications, International Journal of Power Electronics and Drive System, Vol. 11, No. 3, September 2020, pp. 1675-1688.
  • [10] Chandrasekhar O., five-level svm inverter for an induction motor with direct torque controller, Journal of Electrical Engineering, December 2013.
  • [11] Casadei D., Serra G., Stefani A., Tani A., and Zarri L., DTC Drives for Wide Speed Range Applications Using a Robust Flux-Weakening Algorithm, IEEE Transactions on Industrial Electronics, VOL. 54, NO. 5, OCTOBER 2007.
  • [12] Tarchała G., Orlowska-Kowalska T., Nguyen Thac K, Dybkowski M., Performance analysis of the sensorless direct torque controlled induction motor drive with optimal field weakening algorithm in traction applications, Przeglad Elektrotechniczny, 88(11):12-16, January 2012.
  • [13] Kumar Singh A., Reddy U., Kumar Prabhakar K., Kumar P., Selection of Reference Flux Linkage for Direct Torque Control Based Induction Motor Drive in Electric Vehicle Applications, SAE International. J. Alt. Power./Volume 8, Issue 1, 2019.
  • [14] De Klerk M L., Saha A K., Performance analysis of DTCSVM in a complete traction motor control mechanism for a battery electric vehicle, Heliyon 8, (2022) e09265.
  • [15] Nguyen Thac K., Tarchała G., Orlowska-Kowalska T., Comparative analysis of the chosen field-weakening methods for the Direct Rotor Flux Oriented Control drive system, Archives of electrical Engineering, VOL. 61(4), pp. 443-454 (2012).
  • [16] Genta G., Motor vehicle dynamics: modeling and simulation, Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Pte.Ltd, Vol. 43, 1997.
  • [17] Parker G., Griffin J., Popov A., The effect on power consumption & handling of efficiency-driven active torque distribution in a four wheeled vehicle, The Dynamics of Vehicles on Roads and Tracks, proceeding IAVSD 2015, Graz, Austria, 17–21 August 2015.
  • [18] Bayar K., Performance comparison of electric-vehicle drivetrain architectures from a vehicle dynamics perspective, J Automobile Engineering, 1–21, IMechE 2019.
  • [19] Jalali K., Uchida T., Lambert S., McPhee, J., Development of an Advanced Torque Vectoring Control System for an Electric Vehicle with In-Wheel Motors using Soft Computing Techniques, SAE International, 2013-01-0698.
  • [20] Niesner C., Sensibilité et robustesse à l'incertitude paramétrique: une approche Bond Graph, Thèse de doctorat,Université des sciences et technologies de Lille, 2005.
  • [21] Beckman B., Physics of Racing. Part 25 : Combination grip, 1992, p. 116–121.
  • [22] Cipek M., Pavkovic D., Joško P., A control-oriented simulation model of a power-split hybrid electric vehicle, Applied Energy, 2012.
  • [23] Lia L., Jiaa G., Chena J., Zhua H., Caob D., J Song, A novel vehicle dynamics stability control algorithm based on thehierarchical strategy with constrain of nonlinear tyre forces, Vehicle System Dynamics, International Journal of Vehicle Mechanics and Mobility, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eac6788-0305-4bb9-92fb-66639865a860
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.