Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Parkinson's disease is a recognizable clinical syndrome with a variety of causes and clinical presentations; it represents a rapidly growing neurodegenerative disorder. Since about 90 percent of Parkinson's disease sufferers have some form of early speech impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the recognition of voice impairments from vowel phonations or the subjects' discourse. This paper presents a new approach for Parkinson's disease detection from speech sounds that are based on CNN and LSTM and uses two categories of characteristics. These are Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) obtained from noise-removed speech signals with comparative EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD methods. In the second step, the GTCC and MFCC are extracted from the enhanced audio signals. The classification process is carried out in the third step by feeding these features into the LSTM and CNN models, which are designed to define sequential information from the extracted features. The experiments are performed using PC-GITA and Sakar datasets and 10-fold cross validation method, the highest classification accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of this study indicate that the characteristics of GTCC are more appropriate and accurate for the assessment of PD than MFCC.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--24
Opis fizyczny
Bibliogr.35 poz., fig., tab.
Twórcy
autor
- Laboratory Electrical and Industrial Engineering, Information Processing, Informatics, and Logistics (GEITIIL), Faculty of Science Ain Chock, University Hassan II, Casablanca, Morocco
- Laboratory Electrical and Industrial Engineering, Information Processing, Informatics, and Logistics (GEITIIL), Faculty of Science Ain Chock, University Hassan II, Casablanca, Morocco
autor
- Research Center STIS, M2CS, National Higher School of Arts and Craft, Rabat (ENSAM), Mohammed V University in Rabat, Morocco
Bibliografia
- [1] Ali, Z., Elamvazuthi, I., Alsulaiman, M., & Muhammad, G. (2016). Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model. Journal of Voice, 30(6), 757.e7-757.e19. https://doi.org/10.1016/j.jvoice.2015.08.010
- [2] Altuve, M., Suárez, L., & Ardila, J. (2020). Fundamental heart sounds analysis using improved complete ensemble EMD with adaptive noise. Biocybernetics and Biomedical Engineering, 40(1), 426–439. https://doi.org/10.1016/j.bbe.2019.12.007
- [3] Dash, T. K., Mishra, S., Panda, G., & Satapathy, S. Ch. (2021). Detection of COVID-19 from speech signal using bio-inspired based cepstral features. Pattern Recognition, 117, 107999. https://doi.org/10.1016/j.patcog.2021.107999
- [4] Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366. https://doi.org/10.1109/TASSP.1980.1163420
- [5] Demir, F., Siddique, K., Alswaitti, M., Demir, K., & Sengur, A. (2022). A Simple and Effective Approach Based on a Multi-Level Feature Selection for Automated Parkinson’s Disease Detection. Journal of Personalized Medicine, 12(1), 55. https://doi.org/10.3390/jpm12010055
- [6] Drissi, T. B., Zayrit, S., Nsiri, B., & Ammoummou, A. (2019). Diagnosis of Parkinson’s disease based on wavelet transform and Mel Frequency Cepstral Coefficients. International Journal of Advanced Computer Science and Applications, 10(3), 125–132. https://doi.org/10.14569/IJACSA.2019.0100315
- [7] Er, M. B., Isik, E., & Isik, I. (2021). Parkinson’s detection based on combined CNN and LSTM using enhanced speech signals with Variational mode decomposition. Biomedical Signal Processing and Control, 70, 103006. https://doi.org/10.1016/j.bspc.2021.103006
- [8] Grossmann, A., Morlet, J., & Paul, T. (1985). Transforms associated to square integrable group representations. I. General results. Journal of Mathematical Physics, 26(10), 2473–2479. https://doi.org/10.1063/1.526761
- [9] Hammami, I., Salhi, L., & Labidi, S. (2020). Voice Pathologies Classification and Detection Using EMD-DWT Analysis Based on Higher Order Statistic Features. IRBM, 41(3), 161–171. https://doi.org/10.1016/j.irbm.2019.11.004
- [10] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193
- [11] Karan, B., Sahu, S. S., & Mahto, K. (2020). Parkinson disease prediction using intrinsic mode function based features from speech signal. Biocybernetics and Biomedical Engineering, 40(1), 249–264. https://doi.org/10.1016/j.bbe.2019.05.005
- [12] Karan, B., Sahu, S. S., Orozco-Arroyave, J. R., & Mahto, K. (2020). Hilbert spectrum analysis for automatic detection and evaluation of Parkinson’s speech. Biomedical Signal Processing and Control, 61, 102050. https://doi.org/10.1016/j.bspc.2020.102050
- [13] Karan, B., & Sekhar Sahu, S. (2021). An improved framework for Parkinson’s disease prediction using Variational Mode Decomposition-Hilbert spectrum of speech signal. Biocybernetics and Biomedical Engineering, 41(2), 717–732. https://doi.org/10.1016/j.bbe.2021.04.014
- [14] Kethireddy, R., Kadiri, S. R., & Gangashetty, S. V. (2022). Exploration of temporal dynamics of frequency domain linear prediction cepstral coefficients for dialect classification. Applied Acoustics, 188, 108553. https://doi.org/10.1016/j.apacoust.2021.108553
- [15] López-Pabón, F. O., Arias-Vergara, T., & Orozco-Arroyave, J. R. (2020). Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease. TecnoLógicas, 23(47), 93–108. https://doi.org/10.22430/22565337.1401
- [16] Mondal, A., Banerjee, P., & Tang, H. (2018). A novel feature extraction technique for pulmonary sound analysis based on EMD. Computer Methods and Programs in Biomedicine, 159, 199–209. https://doi.org/10.1016/j.cmpb.2018.03.016
- [17] Moro-Velázquez, L., Gómez-García, J. A., & Godino-Llorente, J. I. (2016). Voice pathology detection using modulation spectrum-optimized metrics. Frontiers in Bioengineering and Biotechnology, 4. https://doi.org/10.3389/fbioe.2016.00001
- [18] Nagarajan, S., Nettimi, S. S. S., Kumar, L. S., Nath, M. K., & Kanhe, A. (2020). Speech emotion recognition using cepstral features extracted with novel triangular filter banks based on bark and ERB frequency scales. Digital Signal Processing, 104, 102763. https://doi.org/10.1016/j.dsp.2020.102763
- [19] Najnin, S., & Banerjee, B. (2019). Speech recognition using cepstral articulatory features. Speech Communication, 107, 26–37. https://doi.org/10.1016/j.specom.2019.01.002
- [20] Nouhaila, B., Taoufiq, B. D., & Benayad, N. (2022). An Intelligent Approach based on the Combination of the Discrete Wavelet Transform, Delta Delta MFCC for Parkinson’s Disease Diagnosis. International Journal of Advanced Computer Science and Applications, 13(4), 562–571. https://doi.org/10.14569/IJACSA.2022.0130466
- [21] Orozco-Arroyave, J. R., Arias-Londõno, J. D., Vargas-Bonilla, J. F., González-Rátiva, M. C., & Nöth, E. (2014.). New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14) (pp. 342-347). European Language Resources Association (ELRA).
- [22] Oyinloye, B. E., Iwaloye, O., & Ajiboye, B. O. (2021). Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson’s disease and Alzheimer’s disease. Scientific African, 12. https://doi.org/10.1016/j.sciaf.2021.e00826
- [23] Qin, J., Liu, T., Wang, Z., Zou, Q., Chen, L., & Hong, Ch. (2022). Speech Recognition for Parkinson’s Disease Based on Improved Genetic Algorithm and Data Enhancement Technology. In Wang, Y., Zhu, G., Han, Q., Wang, H., Song, X., & Lu, Z. Communications in Computer and Information Science, (vol. 1628, pp. 273–286).Springer. https://doi.org/10.1007/978-981-19-5194-7_21
- [24] Quan, Ch., Ren, K., Luo, Z., Chen, Z., & Ling, Y. (2022). End-to-end deep learning approach for Parkinson’s disease detection from speech signals. Biocybernetics and Biomedical Engineering, 42(2), 556–574. https://doi.org/10.1016/j.bbe.2022.04.002
- [25] Sakar, B. E., Isenkul, M. E., Sakar, C. O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., & Kursun, O. (2013). Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE Journal of Biomedical and Health Informatics, 17(4), 828–834. https://doi.org/10.1109/JBHI.2013.2245674
- [26] Sakar, C. O., Serbes, G., Gunduz, A., Tunc, H. C., Nizam, H., Sakar, B. E., Tutuncu, M., Aydin, T., Isenkul, M. E., & Apaydin, H. (2019). A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Applied Soft Computing Journal, 74, 255–263. https://doi.org/10.1016/j.asoc.2018.10.022
- [27] Soumaya, Z., Drissi Taoufiq, B., Benayad, N., Yunus, K., & Abdelkrim, A. (2021). The detection of Parkinson disease using the genetic algorithm and SVM classifier. Applied Acoustics, 171, 107528. https://doi.org/10.1016/j.apacoust.2020.107528
- [28] Soumaya, Z., Taoufiq, B., Benayad, N., Achraf, B., & Ammoumou, A. (2020). A hybrid method for the diagnosis and classifying parkinson’s patients based on time–frequency domain properties and K-nearest neighbor. Journal of Medical Signals & Sensors, 10(1), 60. https://doi.org/10.4103/jmss.JMSS_61_18
- [29] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. In Journal of Machine Learning Research, 15(56), 1929-1958.
- [30] Taoufiq, B. D., Soumaya, Z., Benayad, N., & Nouhaila, B. (2022). Cepstral Coefficient Extraction using the MFCC with the Discrete Wavelet Transform for the Parkinson’s Disease Diagnosis. International Journal of Engineering Trends and Technology, 70(7), 283–290. https://doi.org/10.14445/22315381/IJETT-V70I7P229
- [31] Terriza, M., Navarro, J., Retuerta, I., Alfageme, N., San-Segundo, R., Kontaxakis, G., Garcia-Martin, E., Marijuan, P. C., & Panetsos, F. (2022). Use of Laughter for the Detection of Parkinson’s Disease: Feasibility Study for Clinical Decision Support Systems, Based on Speech Recognition and Automatic Classification Techniques. International Journal of Environmental Research and Public Health, 19(17) 10884. https://doi.org/10.3390/ijerph191710884
- [32] Valero, X., & Alias, F. (2012). Gammatone Cepstral Coefficients: Biologically Inspired Features for Non-Speech Audio Classification. IEEE Transactions on Multimedia, 14(6), 1684–1689. https://doi.org/10.1109/TMM.2012.2199972
- [33] Yagnavajjula, M. K., Alku, P., Rao, K. S., & Mitra, P. (2022). Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features. Journal of Voice. https://doi.org/10.1016/j.jvoice.2022.10.016
- [34] Zahid, L., Maqsood, M., Durrani, M. Y., Bakhtyar, M., Baber, J., Jamal, H., Mehmood, I., & Song, O.-Y. (2020). A Spectrogram-Based Deep Feature Assisted Computer-Aided Diagnostic System for Parkinson’s Disease. IEEE Access, 8, 35482–35495. https://doi.org/10.1109/ACCESS.2020.2974008
- [35] Zhang, T., Zhang, Y., Sun, H., & Shan, H. (2021). Parkinson disease detection using energy direction features based on EMD from voice signal. Biocybernetics and Biomedical Engineering, 41(1), 127–141. https://doi.org/10.1016/j.bbe.2020.12.009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0eaa833c-6502-4a35-a2ca-ef9cbd4de8b1