PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of hydrogen-based propulsion systems in the maritime sector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maritime industry is undergoing a technology transition that aims to increase the use of low-emission fuels. There is a significant trend visible of new ships being ordered with alternative fuel propulsion. In the future shipping’s fuel market will be more diverse and it will rely on multiple energy sources. One of the very promising ways to meet the International Maritime Organisation’s decarbonization requirements is to operate ships with sustainable hydrogen propulsion. One of the possible options to limit greenhouse gases emissions is the production of low-carbon ‘green’ hydrogen by water electrolysis using low-carbon electricity. This hydrogen can then be used directly in fuel cells to produce electricity or in the internal combustion engines, without having a carbon impact and pollutant emissions. Hydrogen can also be converted into its derivatives. This paper presents a review of recent studies of ships’ hydrogen propulsion systems, different aspects of production, transportation, storage, and using liquid/gaseous H2 and its derivatives as a fuel in the shipping industry. H2 propulsion in maritime transport is still in the experimental phase. In most cases, these experiments serve as a kind of platform for evaluating the applicability of different technological solutions. This article presents existing ships’ hydrogen and its derivates propulsion systems, projects, and existing conceptual studies.
Rocznik
Strony
335--380
Opis fizyczny
Bibliogr. 97 poz., rys.
Twórcy
  • Faculty of Mechanical Engineering, Maritime University of Szczecin, Willowa 2, 701-650 Szczecin, Poland
Bibliografia
  • [1] The Intergovernmental Panel on Climate Change Report: Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/sixth-assessment-reportworking-group-i (accessed 22 Apr. 2023).
  • [2] US Environmental Protection Agency: Global Emissions. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed 22 Apr. 2023).
  • [3] International Maritime Organization. Marine Environment Protection Committee (MEPC 76), 10 to 17 June 2021 session. https://www.dnv.com/news/imo-updatemarine-environment-protection-committee-mepc-76-203128 (accessed 22 Apr. 2023).
  • [4] IMO RESOLUTION MEPC.347(78) adopted on 10 June 2022. https://www.ccs.org.cn/ccswzen//articleDetail?id=202212210544869589 (accessed 22 Apr. 2023).
  • [5] Meurer A., Kern J.: Fischer–Tropsch synthesis as the key for decentralized sustainable kerosene production. Energies 14(2021), 1836. doi: 10.3390/en14071836
  • [6] Collins L.: Green hydrogen and ammonia produced offshore. https://www.hydro geninsight.com/innovation/plan-unveiled-to-produce-green-hydrogen-and-ammonia-on-a-ship-connected-to-a-1-5gw-wind-farm-in-greenland/2-1-1383080 (accessed 22 Apr. 2023).
  • [7] DNV Maritime Forecast to 2050. Energy Transition Outlook 2022. https://www.dnv.com/maritime/publications/maritime-forecast-2022/index.html (accessed 22 Apr. 2023).
  • [8] Chryssakis C.: DNV Maritime Impact. Methanol as fuel heads for the mainstream in shipping. https://www.dnv.com/expert-story/maritime-impact/Methanol-as-fuelheads-for-the-mainstream-in-shipping.html (accessed 22 Apr. 2023).
  • [9] Hwang S.S., Gil S.J., Lee G.N., Lee J.W., Park H., Jung K.H., Suh S.B.: Life cycle assessment of alternative ship fuels for coastal ferry operating in Republic of Korea. J. Mar. Sci. Eng. 8(2020), 660. doi: 10.3390/jmse8090660
  • [10] Wang H., Trivyza N., Boulougouris E., Foivos M.: Comparison of decarbonisation solutions for shipping: hydrogen, ammonia and batteries. In: Proc. SNAME 14th Int. Marine Design Conf. Vancouver, June 2022. doi: 10.5957/IMDC-2022-297
  • [11] Malmgren E., Brynolf S., Borgh M., Ellis J., Grahn M., Wermuth N.: The HyMethShip Concept: An investigation of system design choices and vessel operation characteristics influence on life cycle performance. In: Proc. 8th Transport Research Arena, Helsinki, Apr. 27-30, 2020. doi: 10.3217/ddqpa-7jr80
  • [12] Malmgren E., Brynolf S., Fridell E., Grahn M., Andersson K.: The environmental performance of a fossil-free ship propulsion system with onboard carbon capture – a life cycle assessment of the HyMethShip concept. Sustain. Energy Fuels 5(2021),2753–2770. doi: 10.1039/D1SE00105A
  • [13] Wermuth N., Zelenkaa J., Moeyaertb P., Aulc A., Borgh M.: The HyMethShip concept: Overview, concept development and obstacles for concept application in oceangoing vessel. In: Proc. 8th Transport Research Arena, Helsinki, Apr. 27-30, 2020.
  • [14] Wermuth N., Lackner M., Barnstedt D., Zelenka J., Wimmer A.: The HyMethShip Project: Innovative emission free propulsion for maritime applications. In: Proc. 17th FAD-Conf., Dresden, 6-7 Nov. 2019, 150–170. doi: 10.3217/kx18p-txz60
  • [15] Zelenka J., Wermuth N., Lackner M., Wimmer A., Andersson K., Veelken H., Moeyaert P., Jäger B., Url M., Lang M., Huschenbett M., Devalapalli R., Sahnen D., Grützner J., Mair C., Ellis J.: In: Proc. 19th CIMAC Cong., Vancouver, 10-14 June 2019, 104. https://www.hymethship.com/wp-content/uploads/2021/02/Zelenka-etal_HyMethShip-CIMAC2019_paper_104.pdf (accessed 22 Apr. 2023).
  • [16] Fernández-Ríos A., Santos G., Pinedo J., Santos E., Ruiz-Salmón I., Laso J., Lyne A., Ortiz A., Ortiz I., Irabien Á., Aldaco R., Margallo M.: Environmental sustainability of alternative marine propulsion technologies powered by hydrogen – a life cycle assessment approach. Sci. Total Environ. 820(2022), 153189. doi:10.1016/j.scitotenv.2022.153189
  • [17] Klebanoff L.E., Caughlan S.A.M., Madsen R.T., Conard C.J., Leach T.S., Appelgate T.B.: Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells. Int. J. Hydrogen Energy 46(2021), 76, 38051–38072. doi:10.1016/j.ijhydene.2021.09.047
  • [18] Alkhaledi A., Sampath S., Pilidis P.: Propulsion of a hydrogen-fuelled LH2 tanker ship. Int. J. Hydrogen Energy 47(2022), 39, 17407–17422. doi: 10.1016/j.ijhydene.2022.03.224
  • [19] Alkhaledi A., Sampath S., Pilidis P.: Economic analysis of a zero-carbon liquefied hydrogen tanker ship. Int. J. Hydrogen Energy 47(2022), 66, 28213–28223. doi:10.1016/j.ijhydene.2022.06.168
  • [20] Bach H., Bergek A., Bjørgum Ø., Hansen T., Kenzhegaliyeva A., Steen M.: Implementing maritime battery-electric and hydrogen solutions: A technological innovation systems analysis. Transp. Res. D: Transp. Environ. 87(2020), 102492. doi:10.1016/j.trd.2020.102492
  • [21] Taccani R., Malabotti S., Dall’Armi C., Micheli D.: High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry. Int. Shipbuild. Prog. 67(2020), 1, 33–56. doi: 10.3233/ISP-190274
  • [22] Pomaska L., Acciaro M.: Bridging the Maritime-Hydrogen Cost-Gap: Real options analysis of policy alternatives. Transp. Res. D: Transp. Environ. 107(2022), 103283.doi: 10.1016/j.trd.2022.103283
  • [23] Shakeri N., Zadeh M., Nielsen B.J.: hydrogen fuel cells for ship electric propulsion: Moving toward greener ships. IEEE Electrification Mag. 8(2020), 2, 27–43.doi: 10.1109/MELE.2020.2985484
  • [24] Peng Y., Xu A.: Development of hydrogen fuel cell propulsion technology for ships. Strategic Study CAE 21(2019), 6, 18–21. doi: 10.15302/J-SSCAE-2019.06.003
  • [25] van Veldhuizen, B.N., Hekkenberg, R.G., Codiglia, L.: Fuel cell systems applied in expedition cruise ships: A comparative impact analysis. In: Proc. 12th Symp. on High-Performance Marine Vehicles, HIPER ’20 (V. Bertram, Ed.), 170–188). TU Hamburg-Harburg, 2020.
  • [26] Minutillo M., Cigolotti V., Di Ilio G., Bionda A., Boonen E.-J., Wannemacher T.: Hydrogen-based technologies in maritime sector: technical analysis and prospective. E3S Web Conf. 334 06011 (2022). doi: 10.1051/e3sconf/202233406011
  • [27] Jeon H., Kim S., Yoon K.: Fuel cell application for investigating the quality of electricity from ship hybrid power sources. J. Mar. Sci. Eng. 7(2019), 241. doi: 10.3390/jmse7080241
  • [28] Xing H., Stuart C., Spence S., Chen H.: Fuel cell power systems for maritime applications: Progress and perspectives. Sustainability 13(2021), 1213. doi: 10.3390/su13031213
  • [29] ABS Sustainability Whitepaper. Methanol as Marine Fuel. Feb. 2021. https://absinfo.eagle.org/acton/media/16130/sustainability-whitepaper-methanolas-marine-fuel (accessed 22 Apr. 2023).
  • [30] ABS Sustainability Whitepaper. Ammonia as Marine Fuel. Oct. 2020. https://absinfo.eagle.org/acton/media/16130/sustainability-whitepaper-ammoniaas-marine-fuel (accessed 22 Apr. 2023).
  • [31] Ustolin F., Campari A., Taccani R.: An extensive review of liquid hydrogen in transportation with focus on the maritime sector. J. Mar. Sci. Eng. 10(2022), 1222. doi:10.3390/jmse10091222
  • [32] Panić I., Cuculić A., Ćelić J.: Color-coded hydrogen: Production and storage in maritime sector. J. Mar. Sci. Eng. 10(2022), 1995. doi: 10.3390/jmse10121995
  • [33] van Rheenen E.S., Paddinga J.T., Slootwegb J.C., Vissera K.: A review of the potential of hydrogen carriers for zero emission, low signature ship propulsion systems. In: Proc. 16th Bien. Int. Naval Engineering Conf. and Exhib., Nov. 2022. doi:10.24868/10649
  • [34] Matthé J., Jai P., Pierre J.: Hydrogen in Maritime. Opportunities and Challenges. June 2022. https://www.wsp.com/en-pl/insights/hydrogen-in-maritimeopportunities-and-challenges (accessed 22 Apr. 2023).
  • [35] Hyde K., Ellis A.: Feasibility of hydrogen bunkering. ITM Power (2019). https://northsearegion.eu/media/9385/feasibility-of-hydrogen-bunkering-final080419.pdf (accessed 22 Apr. 2023).
  • [36] Tayarani H., Ramji A.: Life cycle assessment of hydrogen transportation pathways via pipelines and truck trailers: Implications as a low carbon fuel. Sustainability 14(2022), 12510. doi: 10.3390/su141912510
  • [37] Patonia A., Poudineh R.: Global trade of hydrogen. The Oxford Institute for Energy Studies (2022). https://www.oxfordenergy.org/publications/global-trade-ofhydrogen-what-is-the-best-way-to-transfer-hydrogen-over-long-distances/ (accessed 22 Apr. 2023).
  • [38] Otto M., Chagoya K.L., Blair R.G., Hick M.S., Kapat J.S.: Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation. J. Energ. Stor. 55(2022), D, 105714. doi:10.1016/j.est.2022.105714
  • [39] Johnston C., Khan M.H.A., Amal R., Daiyan R., MacGill I.: Shipping the sunshine: An open-source model for costing renewable hydrogen transport from Australia. Int. J. Hydrogen Energy 47(2022), I47, 20362–20377. doi: 10.1016/j.ijhydene.2022.04.156
  • [40] Witek M., Uilhoorn F.: Impact of hydrogen blended natural gas on linepack energy for existing high pressure pipelines. Arch. Thermodyn. 43(2022), 2, 111–124. doi:10.24425/ather.2022.143174
  • [41] Bacquart T., Moore N., Wilmot R., Bartlett S., Morris A.S.O., Olden J., Becker H., Aarhaug T.A., Germe S., Riot P., Murugan A., Mattelaer V.: hydrogen for maritime application—quality of hydrogen generated onboard ship by electrolysis of purified seawater. Processes 9(2021), 1252. doi: 10.3390/pr9071252
  • [42] Kanchiralla F.M., Brynolf S., Malmgren E., Hansson J., Grahn M.: Life-cycle assessment and costing of fuels and propulsion systems in future fossil-free shipping. Environ. Sci. Technol. 56(2022), 17, 12517–12531. doi: 10.1021/acs.est.2c03016
  • [43] Sullivan B.P., Ansaloni G.M.M., Bionda A., Rossi M.: A life cycle perspective to sustainable hydrogen powered maritime systems – functional and technical requirements. Int. J. Prod. Lifecycle Manag. 14(2022), 2-3, 282–301. doi: 10.1504/IJPLM.2022.125822
  • [44] Lee G.N., Kim J.M., Jung K.H., Park H., Jang H.S., Lee C.S., Lee J.W.: Environmental life-cycle assessment of eco-friendly alternative ship fuels (MGO, LNG, and hydrogen) for 170 GT nearshore ferry. J. Mar. Sci. Eng. 10(2022), 755. doi:10.3390/jmse10060755
  • [45] Kotowicz J., Bartela Ł., Dubiel-Jurgaś K.: Analysis of energy storage system with distributed hydrogen production and gas turbine. Arch. Thermodyn. 38(2017), 4, 65–87. doi: 10.1515/aoter-2017-0025
  • [46] Ajanovic A., Sayer M., Haas R.: The economics and the environmental benignity of different colors of hydrogen. Int. J. Hydrogen Energy 47(2022), 57, 24136–24154.doi: 10.1016/j.ijhydene.2022.02.094
  • [47] Hydrogen as Marine Fuel Whitepaper. https://absinfo.eagle.org/acton/media/16130/hydrogen-as-marine-fuel-whitepaper (accessed 22 Apr. 2023).
  • [48] Hydrogen – Energy Transition Technology. https://www.irena.org/EnergyTransition/Technology/Hydrogen (accessed 22 Apr. 2023).
  • [49] HySeas Project. https://www.hyseas3.eu/the-project/ (accessed 22 Apr. 2023).
  • [50] Aquaterra Energy, Lhyfe and Borr Drilling form partnership for pioneering offshore green hydrogen jack-up rig production concept. https://aquaterraenergy.com/aquaterra-energy-lhyfe-and-borr-drilling-form-partnership-for-pioneeringoffshore-green-hydrogen-jack-up-rig-production-concept/ (accessed 22 Apr. 2023).
  • [51] Hydrogen production takes system to new levels. https://tractebel-engie.com/en/news/2019/400-mw-offshore-hydrogen-production-takes-system-to-new-levels (accessed 22 Apr. 2023).
  • [52] Hydrogen Power-to-X (P2X) fuels. https://wartsila.prod.sitefinity.fi/energy/sustainable-fuels/the-many-types-of-sustainable-fuels (accessed 22 Apr. 2023).
  • [53] Type 212A class Submarine. https://www.seaforces.org/marint/German-Navy/ Submarine/Type-212A-class.htm (accessed 22 Apr. 2023).
  • [54] Kolodziejski M., Michalska-Pozoga I.: Battery energy storage systems in ships’ hybrid/electric propulsion systems. Energies 16(2023), 1122. doi: 10.3390/en16031122
  • [55] Viking Lady. https://corvusenergy.com/projects/viking-lady/ (accessed 22 Apr. 2023).
  • [56] European Maritime Safety Agency: Study on electrical energy storage for ships. DNV GL. Rep. 2019-0217, Rev. 04. Document No.: 11B59ZDK-1, 2020-05-05, EMSA,Lisbon 2019.
  • [57] Schuler M.: First ship with high temperature fuel cell for greener power supply. gCaptain, 2009. https://gcaptain.com/ship-high-temperature-fuel-cell/ (accessed 22 Apr.2023).
  • [58] Ammonia fuel cells for deep-sea shipping – a key piece in the zeroemission puzzle. https://shipfc.eu/ammonia-fuel-cells-for-deep-sea-shipping-a-keypiece-in-the-zero-emission-puzzle/ (accessed 22 Apr. 2023).
  • [59] Viking Energy with ammonia-driven fuel cell. https://eidesvik.no/viking-energywith-ammonia-driven-fuel-cell/ (accessed 22 Apr. 2023).
  • [60] CSOV Edda Breeze. https://eddawind.com/vessels/edda-breeze/ (accessed 22 Apr. 2023).
  • [61] Vessel review. Edda Breeze – Edda Wind hydrogen ready, walk-to-work vessel. https://www.bairdmaritime.com/work-boat-world/offshore-world/offshoreoperations-maintenance/offshore-maintenance/vessel-review-edda-breeze-eddawind-hydrogen-ready-walk-to-work-vessel-that-can-house-120-personnel/ (accessed 22 Apr. 2023).
  • [62] Burke J.: Hydrogen-ready vessel delivered. https://www.dieselgasturbine.com/news/hydrogen-ready-vessel-delivered/8021032.article (accessed 22 Apr. 2023).
  • [63] WFIV Boreas. https://www.vanoord.com/en/updates/van-oord-takes-next-stepimplementing-more-sustainable-fuels/ (accessed 22 Apr. 2023).
  • [64] Offshore Installation Vessel Boreas. https://vanoord.de/wpcontent/uploads/2022/03/Equipment-leaflet-Offshore-installation-vessel-Boreasdraft.pdf (accessed 22 Apr. 2023).
  • [65] Stena Germanica RoPax Ferry. https://www.ship-technology.com/projects/stenagermanica-ropax-ferry/ (accessed 22 Apr. 2023).
  • [66] Energy Observer. From ocean racer to tech wonder. https://www.yachtingworld.com/extraordinary-boats/energy-observer-from-oceanracer-to-tech-wonder-132195 (accessed 22 Apr. 2023).
  • [67] Nagy-McKenna C.: Meet the Energy Observer, the World’s First Hydrogen-powered Boat and Trailblazing Energy Laboratory. https://www.enerdynamics.com/EnergyCurrents_Blog/Meet-the-Energy-Observer-the-Worlds-First-Hydrogen-poweredBoat-and-Trailblazing-Energy-Laboratory.aspx (accessed 22 Apr. 2023).
  • [68] Energy Observer. Review of the 15,000 nautical miles of navigation in 2021. https://www.energy-observer.org/innovations/energy-balance-2021 (accessed 22 Apr. 2023).
  • [69] Energy Observer. Energy Observer 2, a demonstrator vessel that runs on liquid H2. https://www.energy-observer.org/resources/energy-observer-2-liquid-hydrogen (accessed 22 Apr. 2023).
  • [70] Hakirevic Prevljak N. Energy Observer unveils zero-emission, LH2-powered cargo ship concept. https://www.offshore-energy.biz/energy-observer-unveils-lh2-poweredcargo-ship-concept/ (accessed 22 Apr. 2023).
  • [71] BAE Systems Provides First Zero-Emission Fuel Cell Propulsion System for U.S. Vessel. https://seapowermagazine.org/bae-systems-provides-first-zeroemission-fuel-cell-propulsion-system-for-u-s-vessel/ (accessed 22 Apr. 2023).
  • [72] Hydrogen Fuel Cell Passenger Ferry for SWITCH Maritime. https://www.allameri canmarine.com/vessels-gallery/sea-change-hydrogen/ (accessed 22 Apr. 2023).
  • [73] Ervin H.: Tour the Sea Change ferry at Marine Log’s FERRIES 2022. https://www.marinelog.com/passenger/ferries/tour-the-sea-change-ferry-atmarine-logs-ferries-2022/ (accessed 22 Apr. 2023).
  • [74] Sea Change. https://www.switchmaritime.com/projects (accessed 22 Apr. 2023).
  • [75] Hydrogen Ferry Hydra. https://corvusenergy.com/projects/mf-hydra/ (accessed 22 Apr. 2023).
  • [76] Vessel review. Hydra – Norled takes delivery of ferry designed to run on liquid hydrogen. https://www.bairdmaritime.com/work-boat-world/passenger-vesselworld/ro-pax/vessel-review-hydra-norled-takes-delivery-of-ferry-designed-to-runon-liquid-hydrogen/ (accessed 22 Apr. 2023).
  • [77] Norled’s hydrogen ferry approved for service. https://www.rivieramm.com/newscontent-hub/norleds-liquid-hydrogen-ferry-hydra-to-enter-active-service-75630 (accessed 22 Apr. 2023).
  • [78] Bahtić F.: Power Cell to provide hydrogen solutions for two Norwegian state ferries. https://www.offshore-energy.biz/powercell-to-provide-hydrogen-solutions-fortwo-norwegian-state-ferries/ (accessed 22 Apr. 2023).
  • [79] MAN Engines: The first dual fuel hydrogen engines in use on a work boat. MAN Truck & Bus SE Press Newsroom, 01-06-2022. https://press.mantruckandbus.com/ corporate/man-engines-the-first-dual-fuel-hydrogen-engines-in-use-on-a-workboat/ (accessed 22 Apr. 2023).
  • [80] Vessel review. HYDROCAT 48 – Netherlands’ Windcat Workboats puts hydrogenfueled newbuild in operation. https://www.bairdmaritime.com/work-boatworld/offshore-world/offshore-operations-maintenance/crew-transfer/vessel-reviewhydrocat-48-netherlands-windcat-workboats-puts-hydrogen-fuelled-newbuild-inoperation/ (accessed 22 Apr. 2023).
  • [81] Windcat Workboats’ Hydrogen-Powered Hydrocat 48 Based at Port of Ostend. https://www.heavyliftnews.com/windcat-workboats-hydrogen-powered-hydrocat48-based-at-port-of-ostend/ (accessed 22 Apr. 2023).
  • [82] Hydrogen-powered Hydrocat 48 completes its first job with Vestas. https://www.maritimeeconomy.com/post-details.php?post_id=a2lmaQ==&post_name=Hydrogenpowered%20Hydrocat%2048%20completes%20its%20first%20job%20with%20Vestas&segment_name=Operations (accessed 22 Apr. 2023).
  • [83] Hydrogen-powered tug is world first for Port of Antwerp. https://newsroom.portofantwerpbruges.com/hydrogen-powered-tug-is-world-first-for-port-of-antwerp (accessed 22 Apr. 2023).
  • [84] Port of Antwerp-Bruges & CMB.TECH prepare Hydrotug, the first hydrogen-poweredtugboat. https://newsroom.portofantwerpbruges.com/port-of-antwerp-bruges–cmbtech-prepare-hydrotug-the-first-hydrogen-powered-tugboat (accessed 22 Apr. 2023).
  • [85] World’s First Hydrogen-Powered Tug Arrives in Belgium for Final Tests. https://maritime-executive.com/article/world-s-first-hydrogen-powered-tug-arrives-in-belgium-for-final-tests (accessed 22 Apr. 2023).
  • [86] Hydrotug. https://cmb.tech/hydrotug-project (accessed 22 Apr. 2023).
  • [87] BeHydro engine emissions. https://www.behydro.be/en/home.html (accessed 22 Apr. 2023).
  • [88] Windcat Offshore and Damen Shipyards develop future-proof CSOVs. CMB.TECH. Nov. 29, 2022. https://cmb.tech/news/windcat-offshore-and-damen-shipyardsdevelop-future-proof-csovs (accessed 22 Apr. 2023).
  • [89] First drawings of Scottish led hydrogen-powered ferry project launched. https://safety4sea.com/first-drawings-of-scottish-led-hydrogen-powered-ferry-projectlaunched/ (accessed 22 Apr. 2023).
  • [90] HySeas Project String Test. https://www.hyseas3.eu/string-test/ (accessed 22 Apr. 2023).
  • [91] Topeka’s hydrogen vessels one step closer to reality. https://www.wilhelmsen.com/media-news-and-events/press-releases/2021/topekas-hydrogen-vessels-onestep-closer-to-reality/ (accessed 22 Apr. 2023).
  • [92] HyShip Topeka. https://hyship.eu/about/ (accessed 22 Apr. 2023).
  • [93] Ulstein SX190 – concept. https://ulstein.com/vessel-design/sx190 (accessed 22 Apr.2023).
  • [94] J102 Zero Emission. https://ulstein.com/vessel-design/j102-1 (accessed 22 Apr. 2023).
  • [95] Norwegian Ship Design chosen to design the world’s first hydrogen powered cargo ship. https://www.norwegianshipdesign.no/archive/with-orca-powered-by-nature (accessed 22 Apr. 2023).
  • [96] Hydrogen-Fueled and Wind-Powered Bulker Receives Design Approval. https://maritime-executive.com/article/hydrogen-fueled-and-wind-powered-bulkerreceives-design-approval (accessed 22 Apr. 2023).
  • [97] Neo Orbis ship concept. https://www.nweurope.eu/media/16834/neo-orbis_en.pdf (accessed 22 Apr. 2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ea8e59d-c8e5-432f-b563-7a486d187fb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.