PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biogas plants processing municipal waste are very important investments from the point of view of waste management and also the sustainable development of urban infrastructures. They may also have a potentially negative impact on the environment in the form of odour emission. Olfactometry is the main method for odour impact assessment. Field olfactometry allows for performing a wide range of tests, the results of which are practically instantaneous. The purpose of this work is to provide a tool for assessing the odour impacts of municipal management facilities, including biogas plants processing municipal waste and evaluating the correctness of processes carried out in these plants, namely the method of field olfactometry. In order to compare obtained olfactometric results with the concentration of chemical compounds, chromatographic tests were also carried out using the Photovac Voyager portable chromatograph (hydrogen sulphide – H2S and dimethyl sulphide – (CH3) 2S. The results of the odour concentration tests are in line with the results of odorant concentration tests and indicate that cod is strongly related to the concentration of hydrogen sulphide. Thanks to this method, it is possible to find a relationship between odour nuisance, technological processes used in the plant and the type of treated waste.
Rocznik
Strony
60--68
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
Bibliografia
  • 1. Badach J., Kolasińska P., Paciorek M., Wojnowski W., Dymerski T., Gębicki J., Dymnicka M. & Namieśnik J. (2018). A case study of odour nuisance evaluation in the context of integrated urban planning, Journal of Environmental Management, 213, pp. 417-424, DOI: 0.1016/j.jenvman.2018.02.086.
  • 2. Benzo M., Mantovani A. & Pittarello A. (2012). Measurement of Odour Concentration of Immissions using a New Field Olfactometer and Markers’ Chemical Analysis, Chemical Engineering Transactions, 30, 103-108, DOI: 10.3303/CET1230018.
  • 3. Capelli L., Sironi S. & Del Rosso R. (2014). Electronic Noses for Environmental Monitoring Applications, Sensors, 14, pp. 19979-20007, DOI: 10.3390/s141119979.
  • 4. Chianese S., Loipersböck J., Malits M. et al. (2015). Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar synthesis gas, Fuel Processing Technology, 132, pp. 39-48, DOI: 10.1016/j.fuproc.2014.12.034.
  • 5. Coccia V., Manni M., Petrozzi A. &, Nicolini A. (2018). Evaluation of the odor impact of some environmental gaseous pollutants: calibration of the methodology and preliminary results, Environmental Science and Pollution Research, 25, pp. 29295-29303, DOI: 10.1007/s11356-018-2931-0.
  • 6. Conti C., Guarino M. & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review, Environment International, 134, 105261, DOI: 10.1016/j.envint.2019.105261.
  • 7. Daskalopoulos E., Badr O. & Probert S.D. (1997). Economic and environmental evaluations of waste treatment and disposal technologies for municipal solid waste. Applied Energy, 58, pp. 209-255, DOI: 10.1016/S0306-2619(97)00053-6.
  • 8. Di Nardo A., Bortone I., Chianese S., Di Natale M., Erto A., Santonastaso G.F. & Musmarra D. (2019). Odorous emission reduction from a waste landfill with an optimal protection system based on fuzzy logic, Environmental Science and Pollution Research, 26, pp. 14755-14765, DOI: 10.1007/s11356-018-2514-0.
  • 9. Ding Y., Cai C., Hu B., Xu Y., Zheng X., Chen Y. & Wu W. (2012). Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China, Waste Management, 32, pp. 17-326, DOI: 10.1016/j.wasman.2011.07.016
  • 10. Drew G.H., Gerard S.R., Burge V.C., Lowe M. Kinnersley R., Sneath, R. & Longhurst P.J. (2007). Appropriateness of selecting different averaging times for modelling chronic and acute exposure to environmental odours, Atmospheric Environment, 41, pp. 2870-2880, DOI: 10.1016/j.atmosenv.2006.09.022.
  • 11. Fabbri B., Gherardi S., Alessio G., Guidi V. & Malagù C. (2014). Sensing of gaseous malodors characteristic of landfills and waste treatment plants, Journal of Sensors and Sensor Systems, 3, pp. 61-67, DOI: 10.5194/jsss-3-61-2014.
  • 12. Fang J., Yang N., Cen D.Y., Shao L.M. & He P.J. (2012). Odor compounds from different sources of landfill: characterization and source identification. Waste Management, 32, pp. 1401-1410, DOI: 10.1016/j.wasman.2012.02.013.
  • 13. Greenman J., Duffield P., Spencer M., Rosemberg D., Corry S., Saad P., Lenton G., Majerus G., Nachnani S. & El-Maaytah M. (2004). Study on the organoleptic intensity scale for measuring malodour. Journal of Dental Research, 83, pp. 81-85, DOI: 10.1177/154405910408300116.
  • 14. Grzelka A., Sówka I. & Miller U. (2018). Methods for assessing the odor emissions from livestock farming facilities. Journal of Ecological Engineering, 2, pp. 56-64, DOI: 10.12912/23920629/86054.
  • 15. Huang D.& Guo H. (2018). Relationships between odor properties and determination of odor concentration limits in odor impact criteria for poultry and dairy barns. Science of the Total Environment, 630, pp. 1484-1491, DOI: 10.1016/j.scitotenv.2018.02.318.
  • 16. International Organization for Standardization (2004). ISO 4120:2004. Sensory analysis - Methodology - Triangle test.
  • 17. Kim K.H., Choi Y.J., Jeon E.C. & Sunwoo Y. (2005). Characterization of malodorous sulfur compounds in landfill gas, Atmospheric Environment, 39, pp. 1103-1112, DOI: 10.1016/j.atmosenv.2004.09.083.
  • 18. Kolasińska P., Cieślik B., Dymerski T. & Namieśnik J. (2017). Assessment of odor nuisance in the areas adjacent to the municipal wastewater treatment plants by fi eld olfactometry. Przemysł Chemiczny, 96, pp. 1370-1373, DOI: 10.15199/62.2017.6.31. (in Polish)
  • 19. Li D., Lu W., Liu Y., Guo H., Xu S., Ming Z. & Wang H. (2005). Analysis of relative concentration of ethanol and other odorous compounds (OCs) emitted from the working surface at a landfill in China, PLoS ONE 10:e0119305, DOI: 10.1371/journal.pone.0119305.
  • 20. Maurer D.L., Bragdon A.M., Short B.C., Ahn H. & Koziel J.A. (2018). Improving environmental odor measurements: comparison of lab-based standard method and portable odor measurement technology. Archives of Environmental Protection, 44, 2, pp. 100-107, DOI: 10.24425/119699.
  • 21. McGinley M.A. & McGinley C.M. (2004). Comparison of field olfactometers in a controlled chamber using hydrogen sulfide as the test odorant. Water, Science and Technology, 50(4), pp. 75-82, DOI: 10.2166/wst.2004.0225.
  • 22. Meišutovič-Akhtarieva M. & Marčiulaitienė E. (2017). Research on odours emitted from non-hazardous waste landfill using dynamic olfactometry, Proceedings of “Environmental Engineering” 10th International Conference, Vilnius Gediminas Technical University Lithuania, 27-28 April 2017. eISSN 2029-7092/eISBN 978-609-476-044-0, DOI: 10.3846/enviro.2017.034.
  • 23. Munoz R., Sivret E., Parcsi G., Lebrero R., Wang X., Suff et I.H. & Stuetz R. (2010), Monitoring techniques for odour abatement assessment, Water Research, 44, pp. 5129-5149, DOI: 10.1016/j.watres.2010.06.013.
  • 24. Nakamoto T. & Sumitimo E. (2003). Study of robust odor sensing system with auto-sensitivity control, Sensors and Actuators B: Chemical, 89, pp. 285-291, DOI: 10.1016/S0925-4005(03)00003-0.
  • 25. Newby B. & McGinley M. (2004). Ambient odour testing of concentrated animal feeding operations using field and laboratory olfactometers, Water Science and Technology, 50, 109, DOI: 10.2166/wst.2004.0235.
  • 26. Pawnuk M. & Sówka I.M. (2019). Application of mathematical modelling in evaluation of odour nuisance from selected waste management plant, E3S web of conferences, 100, 00063, DOI: 10.1051/e3sconf /2019.
  • 27. Polski Komitet Normalizacyjny (2007). PN-EN 13725:2007. Air quality. Determination of odour concentration by dynamic olfactometry. (in Polish)
  • 28. Połomka J. & Jędrczak A. (2019). Efficiency of waste processing in the MBT system, Waste Management, 96, pp. 9-14, DOI: 10.1016/j.wasman.2019.06.041.
  • 29. Ravina M., Panepinto D., Estrada J.M., De Giorgio L., Salizzoni P., Zanetti M. & Meucci L. (2020). Integrated model for estimating odor emissions from civil wastewater treatment plants, Environmental, Science and Pollution Research, 27, pp. 3992-4007, DOI: 10.1007/s11356-019-06939-5.
  • 30. Rosik-Dulewska Cz. (2012). Basics of waste management, Wydawnictwo Naukowe PWN, Warszawa 2012. (in Polish)
  • 31. Szulczyński B., Dymerski T., Gębicki J. & Namieśnik J. (2018). Instrumental measurement of odour nuisance in city agglomeration using electronic nose, E3S Web of conferences, 28, 01012, DOI: 10.1051/e3sconf/20182801012.
  • 32. Szulczyński B. & Gębicki J. (2019). Electronic nose - an instrument for odour nuisances monitoring, E3S Web of conferences, 100, 00079, DOI: 10.1051/e3sconf /2019.
  • 33. Szyłak-Szydłowski M. (2014). Comparison of Two Types of Field Olfactometers for Assessing Odours in Laboratory and Field Tests, Chemical Engineering Transactions, 14, pp. 67-72, DOI: 10.3303/CET1440012.
  • 34. Wiśniewska M. (2018). Environmental impact assessment of municipal biogas plants - case study, SHS Web of Conferences, 02015, DOI: 10.1051/shsconf/20185702015.
  • 35. Wiśniewska M., Kulig A. & Lelicińska-Serafin K. (2018). Identification and preliminary characteristics of odour sources in biogas plants processing municipal waste, SHS Web of Conferences, 57, 022016, DOI: 10.1051/shsconf/20185702016.
  • 36. Wiśniewska M., Kulig A. & Lelicińska-Serafin K. (2019). Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Applied Sciences, 1: 550, DOI: 10.1007/s42452-019-0534-0.
  • 37. Wiśniewska M. (2020). Methods of assessing odour emissions from biogas plants processing municipal waste, Journal of Ecological Engineering, 21, 1, pp. 140-147, DOI: 10.12911/22998993/113039.
  • 38. Wiśniewska M., Kulig A. & Lelicińska-Serafin K. (2020). Odour Emissions of Municipal Waste Biogas Plants - Impact of Technological Factors, Air Temperature and Humidity, Applied Sciences, 10(3), 1093, DOI: 10.3390/app10031093.
  • 39. Yang W., Li W. & Liu B. (2015). Odour prediction model using odour activity value from pharmaceutical industry. Austrian Contributions to Veterinary Epidemiology, 8, pp. 51-60.
  • 40. Young P.J. & Parker A. (1983). The identification and possible environmental impact of trace gases and vapours in landfill gas, Waste Management & Research, 1, pp. 213-226, DOI: 10.1177/0734242X8300100126.
  • 41. Zentner A. (2019). From mechanical biological treatment anaerobic digestion - challenges in changing plant operations, Multidisciplinary Journal for Waste Resources &Residues, 5, pp. 46-56, DOI: 10.31025/2611-4135/2019.13783.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ea85d7f-319a-4c4c-8016-0acc5182e5fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.