PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Record of Late Neogene seismites in turbidite deposits of the Tafna Basin (NW Algeria)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wide variety of soft-sediment deformation structures (SSDS) developed within deposits of the same age may hinder the interpretation of their origin. Some types of SSDS may appear similar though have different trigger mechanisms, while others may result from a specific mechanism. Furthermore, the development of particular SSDS may be influenced by several synchronous or semi-synchronous factors. This study deals with the recognition of SSDS trigger mechanisms with respect to lithological and deformational features of the deposits concerned. Turbidite deposits of late Neogene age in the Hadjret El Gat area (Tafna Basin) contain different types of SSDS associated with (1) slope processes (e.g., slump folds) and induced overburden pressure, coupled with broken beds and overloading structures, and (2) liquefaction and fluidisation phenomena, leading to the development of load structures, ball-and-pillow structures, water-escape structures and syndepositional faults. These two mechanisms of SSDS formation in the study area are thought to result from seismically-induced triggers. Recognition of a vertically-repeated, sandwich-like arrangement of deformed and undeformed layers along with the SSDS features ("trapped" within beds) suggests that these internally-deformed beds are seismites, the first recognized in the Tafna Basin of NW Algeria. Large earthquakes may trigger seismic waves energetic enough to deform strata and induce the development of SSDS. This hypothesis is supported here by tectonic evidence, given deposition of the Tafna Basin strata in the convergence zone between Africa and Eurasia, active since the late Neogene.
Rocznik
Strony
art. no. 25
Opis fizyczny
Bibliogr. 90 poz., fot., map.
Twórcy
  • Université kasdi Marbeh Ouargla, Département des Sciences de la terre et de l’univers, Algeria
  • Adam Mickiewicz University, Institute of Geology, B. Krygowskiego 12, 61-680 Poznań
autor
  • Université Mohamed Ben Ahmed d’Oran, Laboratoire de Paléontologie, Stratigraphique et Paléoenvironnement, Algeria
Bibliografia
  • 1. Allen, J.R., 1977. The possible mechanics of convolute lamination in graded sand beds. Journal of the Geologi cal Society, 134: 19-31. https://doi.Org/10.1144/gsjgs.134.1.0019
  • 2. Allen, J.R., 1982. Sedimentary Structure: their Character and Physical Basis Volume II. Elsevier Science Publishers, Amsterdam.
  • 3. Alsop, G.I., Holdsworth, R.E., McCaffrey, K.J.W., 2007. Scale invariant sheath folds in salt,sediments and shearzones. Journal of Structural Geology, 29: 1585-1604. https://doi.Org/10.1016/j.jsg.2007.07.012
  • 4. Alves,T.M.,2015.Submarine slide blocks and associated soft-sediment deformation in deep-water basins: a review. Marine and Petroleum Geology, 67: 262-285. https://doi.Org/10.1016/j.marpetgeo.2015.05.010
  • 5. Alves, T.M., Lourenço, S.D., 2010. Geomorphologie features related to gravitational collapse: submarine landsliding to lateral spreading on a Late Miocene - Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology, 123: 13-33. https://doi.org/10.1016/j.geomorph.2010.04.030
  • 6. Ambraseys, N., 1988. Engineering seismology. Earthquake Engineering and Structural Dynamics, 17: 1-105. https://doi.org/10.1002/eqe.4290170102
  • 7. Andrieux, J., 1971. La structure du Rif central. Etude des relations entre la tectonique de compression et les nappes de glissement dans un tronęon de chaine alpine. Notes et Mémoires. Service Géologique du Maroc, 235.
  • 8. Belzyt, S., Pisarska-Jamroży, M., Bitinas, A., Woronko, B., Phillips, E.R., Piotrowski, J.A., Jusienė, A., 2021. Repetitive Late Pleistocene soft-sediment deformation by seismicity-induced liquefaction in north-western Lithuania. Sedimentology, 68: 3033-3056. https://doi.org/10.1111/sed.12883
  • 9. Benzina, M., 2014. Evolution tecto-sédimentaire du bassin de la Tafna (Tlemcen, Algérie nord occidentale). MSc Thesis, Université de Tlemcen, Algerie.
  • 10. Benzina, M., Hebib, H., Bensalah, M., 2019. New insights in late Miocene lower Chelif basin biostratigraphy based on planktonic foraminifera (Algeria). Revue de Micropaléontologie, 62: 9-24. https://doi.org/10.1016/j.revmic.2018.10.005
  • 11. Benzina, M., Cherif, A., Naimi, M.N., Hebib, H., Bensalah, M., 2023. Ichnological analysis and depositional setting of late Miocene marginal marine deposits from the Tafna Basin (northwestern Algeria). Geological Society Special Publications, 522: SP522-2022. doi: 10.1144/SP522-2022-275
  • 12. Bhat, G.R., Bali, B.S., Balaji, S., Iqbal, S., Balakrishna, V., 2016. Earthquake triggered soft sediment deformational structures (seismites) in the Karewa Formations of Kashmir Valley - an indicator for paleoseismicity. Journal of the Geological Society of India, 87: 439-452. https://doi.org/10.1007/s12594-016-0412-y
  • 13. Bowman, D., Korjenkov, A., Porat, N., 2004. Late-Pleistocene seismites from Lake Issyk-Kul, the tien shan range, Kyrghyzstan. Sedimentary Geology, 163: 211-228. https://doi.org/10.1016/S0037-0738(03)00194-5
  • 14. Boucif, A., 2006. La tendance de l'activité sismique qui affecte le bassin Néogène de la Tafna. MSc Thesis, Université de Tlemcen, Algerie.
  • 15. Boukhedimi, M.A., Louni-Hacini, A., Bouhadad, Y., 2017. Evidence of seismites in coastal Quaternary deposits of western Oranie (northwestern Algeria). Journal of Seismology, 21: 539-549. https://doi.org/10.1007/s10950-016-9616-2 '
  • 16. Bradley, D., Hanson, L., 1997. Paleoslope analysis of slump folds in the Devonian flysh of marine. The Journal of Geology, 106: 305-318. https://doi.org/10.1086/516024
  • 17. Brandes, C., Steffen, H., Steffen, R., Wu, P., 2015. Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 43: 611-614. https://doi.org/10.1130/G36710.1
  • 18. Chiarella, D., Moretti, M., Longhitano, S.G., Mut, F., 2016. Deformed cross-stratified deposits in the Early Pleistocene tid- ally-dominated Catanzaro strait-fill succession, Calabrian Arc (Southern Italy): triggering mechanisms and environmental significance. Sedimentary Geology, 344: 277-289. https://doi.org/10.1016/j.sedgeo.2016.05.003
  • 19. Collinson, J., 1994. Sedimentary deformational structures. In: The Geological Deformation of Sediments (ed. A. Maltman). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0731-0 4
  • 20. Dasgupta, P., Chatterjee, A., 2019. Formation of water-escape structure during shock-induced fluidization: the role of permeability contrast. Journal of Structural Geology, 124: 1-7. https://doi.org/10.1016/j.jsg.2019.04.002
  • 21. Doe, T.W., Dott, R.H., 1980. Genetic significance of deformed cross bedding-with examples from the Navajo and Weber sandstones of Utah. Journal of Sedimentary Petrology, 50: 793-812. https://doi.org/10.1306/212F7AEF-2B24-11D7-8648000102C1865D
  • 22. Dubourdieu, G., 1962. Dynamique wegenerienne de l'Afrique du nord. In: Livre a la mémoire du Professeure P. FALLOT. Mémoire hors-série-Société géologique de France, 1: 627-644.
  • 23. Farrell, S.G., Eaton, S., 1987. Slump strain in the Tertiary of Cyprus and the Spanish Pyrenees. Definition of palaeoslopes and models of soft-sediment deformation. Geological Society Special Publications, 29: 181-196. https://doi.org/10.1144/GSL.SP.1987.029.01.15
  • 24. Glangeaud, L., 1951. Interprétation tectonophysiques des caractères structuraux et paléogéographiques de la méditerranée occidentale. Bulletin de la Société géologique de France, 6: 735-762.
  • 25. Guardia, P., 1975. Géodynamique de la marge alpine du continent africain ďaprès l'ėtude de l'Oranie nord occidentale (Algérie). Relations structurales et paléogéographiques entre le Rif externe, le Tell et l'Avant-pays atlasique. Ph.D. Thesis, Nice University, France.
  • 26. Guessoum, N., Benhamouche, A.A., Bouhadad, Y., Bourenane, H., Abbouda, M., 2018. Field evidence of Quaternary seismites in the Mostaganem-Relizane (western Algeria) region: seismo- tectonic implication. Arabian Journal of Geosciences, 11: 1-13. https://doi.org/10.1007/s12517-018-4009-1
  • 27. He, B., Qiao, X., Li, H., Su, D., 2018. Soft Sediment Deformation Structures Triggered by the Earthquakes: Response to the High Frequent Tectonic Events during the Main Tectonic Movements. Tectonics: Problems of Regional Settings.
  • 28. Hurst, A., Cartwright, J., 2007. Relevance of sand injectites to hydrocarbon exploration and production. AAPG Memoir, 87: 1-19.
  • 29. Hurst, A., Scott, A., Vigorito, M., 2011. Physical characteristics of sand injectites. Earth-Science Reviews, 106: 215-246. https://doi.org/10.1016/j.earscirev.2011.02.004.
  • 30. Jones, B.G., Rust, B.R., 1983. Massive sandstone facies in the Hawkesbury sandstone, a Triassic fluvial deposit near Sydney, Australia. Journal of Sedimentary Petrology, 53: 1249-1259. https://doi.org/10.1306/212F8355-2B24-11D7-8648000102C1865D
  • 31. Jones, A.P., Omoto, K., 2000. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology, 47: 1211-1226. https://doi.org/10.1046/j.1365-3091.2000.00355.x
  • 32. Koç-Taşgin, C., Altun, F., 2019. Soft-sediment deformation: deep-water slope deposits of a back-arc basin (middle Eocene- Oligocene Kirkgeęit Formation, Elazig Basin), Eastern Turkey. Arabian Journal of Geosciences, 12: 773. https://doi.org/10.1007/s12517-019-4872-4
  • 33. Kuenen, Ph.H., 1958. Experiments in geology. Geological Magazine, 23: 1-8. https://doi.org/10.1144/transglas.23.centenary1
  • 34. Kundu, A., Goswami, B., Eriksson, P.G., 2011. Palaeoseismicity in relation to basin tectonics as revealed from soft-sediment deformation structures of the Lower Triassic Panchet formation, Raniganj basin (Damodar valley), eastern India. Journal of Earth System Science, 120: 167-181. https://doi.org/10.1007/s12040-011-0071-8
  • 35. Lowe, D.R., 1975. Water escape structures in coarse grained sediments. Sedimentology, 22: 157-204. https://doi.org/10.1111/j.1365-3091.1975.tb00290.x
  • 36. Mahboubi, S., Bennami, M., Jaeger, J.J., 2015. New datation of the Tafna Basin (Algeria): a combination between biochronological and magnetostratigraphical data. Palaevertebrata, Montpellier, 39: 1-11.
  • 37. Maltman, A., 1984. On the term soft-sediment deformation. Journal of Structural Geology, 6: 589-592. https://doi.org/10.1016/0191-8141(84)90069-5
  • 38. Marco, S., Agnon, A., 1995. Prehistoric earthquake deformations near Masada, Dead Sea graben. Geology, 23: 695-698. https://doi.org/10.1130/0091-7613(1995)023%3C0695:PEDNMD%3E2.3.CO
  • 39. Mazouzi, A., 2004. La sédimentation détritique profond de la formation des "Grés d'Ad’n El Kihal" (Serravallien) dans la région d'El Fhoul (Bassin de la Tafna, Algerie Nord-Occidental). Mémoire ingéniorat. University Oran, Algerie.
  • 40. Mazumder, R., van Loon, A.J., Arima, M., 2006. Soft-sediment deformation structures in the Earth's oldest seismites. Sedimentary Geology, 186: 19-26. https://doi.org/10.1016/j.sedgeo.2005.12.002
  • 41. Mazumder, R., van Loon, A.J., Malviya, V.P., Arima, M., Ogawa, Y., 2016. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep sea clays and volcanic ashes (Miura Peninsula, Japan). Sedimentary Geology, 344: 323-335. https://doi.Org/10.1016/j.sedgeo.2016.02.010
  • 42. McCalpin, J.P., 2009. Paleoseismology, International Geophysics Series. Elsevier Publishing.
  • 43. Megartsi, M., 1985. Le volcanisme mio-plio-quaternaire de l'Oranie nord occidentale (géologie, pétrologie, géodynamique). Ph.D. Thesis, Université des Sciences et de la Technologie Houari Boumediene, Algerie.
  • 44. Miyata, T., 1990. Slump strain indicative of paleoslope in Cretaceous Izumi sedimentary basin along Median tectonic line, southwest, Japan. Geology, 18: 392-394. https://doi.org/10.1130/0091-7613(1990)018%3C0392:SSIOPI%3E2.3.CO
  • 45. Mohindra, R., Thakur, V.C., 1998. Historic large earthquake-induced soft sediment deformation features in the Sub-Himalayan Doon Valley. Geological Magazine, 135: 269-281. http://dx.doi.org/10.1017/S0016756898008413
  • 46. Montenat, C., Barrier, P., Ott d'Estevou, P., Hibsch, C., 2007. Seismites: an attempt at critical analysis and classiication. Sedimentary Geology, 196: 5-30. https://doi.org/10.1016/j.sedgeo.2006.08.004
  • 47. Moretti, M., 2000. Soft-sediment deformation structures interpreted as seismites in Middle-Late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sedimentary Geology, 135: 167-179. https://doi.org/10.1016/S0037-0738(00)00070-1
  • 48. Moretti, M., Ronchi, A., 2011. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia). Sedimentary Geology, 235: 200-209. https://doi.org/10.1016/j.sedgeo.2010.09.014
  • 49. Moretti, M., Soria, J.M., Alfaro, P., Walsh, N., 2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain). Facies, 44: 283-294. https://doi.org/10.1007/BF02668179
  • 50. Mulder, T., Philippe, R., Faugeres, J.C., Gerard, J., 2011. Reply to the discussion by Roger Higgs on "Hummocky cross-stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins (Western Pyrenees, France)" by Mulder et al. Sedimentology, 56: 997-1015.
  • 51. Naimi, M.N., Vinn, O., Cherif, A., 2021. Bioerosion in Ostrea lamellosa shells from the Messinian of the Tafna Basin (NW Algeria). Carnets de Geolgie, Madrid, 21: 127-135. https://doi.org/10.2110/carnets.2021.2105
  • 52. Obermeier, S.F., Olson, S.M., Green, R.A., 2005. Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, 76: 209-234. https://doi.org/10.1016/j.enggeo.2004.07.009
  • 53. Obermeier, S.F., 2009. Using liquefaction-induced and other softsediment features for paleoseismic analysis. International Geophysics, 95: 497-564. https://doi.org/10.1016/S0074-6142(09)95007-0
  • 54. Odonne, F., Callot, P., Debroas, E.J., Sempere, T., Hoareau, G., Maillard, A., 2011. Soft-sediment deformation from submarine sliding: favourable conditions and triggering mechanisms in examples from the Eocene Sobrarbe delta (Ainsa, Spanish Pyrenees) and the mid-Cretaceous Ayabacas Formation (Andes of Peru). Sedimentary Geology, 235: 234-248. https://doi.org/10.1016/j.sedgeo.2010.09.013
  • 55. Oliveira, C.M.M., Hodgson, D.M., Flint, S.S., 2011. Distribution of soft-sediment deformation structures in clinoform successions of the Permian Ecca Group, Karoo Basin, South Africa. Sedimentary Geology, 235: 314-330. https://doi.org/10.1016/j.sedgeo.2010.09.011
  • 56. Owen, G., 1987. Deformation processes in unconsolidated sands. Geological Society Special Publication, 29: 11-24. https://doi.org/10.1144/GSL.SP. 1987.029.01.02
  • 57. Owen, G., 1995. Soft sediment deformation in upper Proterozoic Torridonian sandstones (Applecross Formation) at Torridon, northwest Scotland. Journal of Sedimentary Research, 65: 495-504. https://doi.org/10.1306/D4268108-2B26-11D7-8648000102C1865D
  • 58. Owen, G., 1996. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsol idated sands and some ancient examples. Sedimentology, 43: 279-293. https://doi.org/10.1046/j.1365-3091.1996.d01-5.x
  • 59. Owen, G., 2003. Load structures: gravity-driven sediment mobilization in the shallow subsurface. Geological Society Special Publications, 216: 21-34. https://doi.org/10.1144/GSL.SP.2003.216.01.03
  • 60. Owen, G., Moretti, M., 2011. Identifying triggers for liquefaction induced soft-sediment deformation in sands. Sedimentary Geology, 235: 141-147. https://doi.org/10.1016/j.sedgeo.2010.10.003
  • 61. Owen, G., Moretti, M., Alfaro, P., 2011. Recognizing triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, 235: 133-342. https://doi.org/10.1016/j.sedgeo.2010.12.010
  • 62. Pisarska-Jamroży, M., 2006. Transitional deposits between the end moraine and outwash plain in the Pomeranian glaciomarginal zone of NW Poland: a missing component of ice contact sedimentary models. Boreas, 35: 126-141. https://doi.org/10.1111/j.1502-3885.2006.tb01117.x
  • 63. Pisarska-Jamroży, M., 2008. Zonation of glaciomarginal environment inferred from Pleistocene deposits of Mysliborz Lakeland, NW Po land. Geografiska Annaler: Series A, Physical Geography, 90: 237-249. https://doi.org/10.1111/j.1468-0459.2008.342.x
  • 64. Pisarska-Jamroży, M., 2013. Varves and megavarves in the Eberswalde Val ley (NE Germany) - a key for the interpretation of glaciolimnic processes. Sedimentary Geology, 291: 84-96. https://doi.org/10.1016/j.sedgeo.2013.03.018
  • 65. Pisarska-Jamroży, M., Weckwerth, P., 2013. Soft-sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits. Sedimentology, 60: 637-665. https://doi.org/10.1111/j.1365-3091.2012.01354.x
  • 66. Pisarska-Jamroży, M., Woźniak, P.P., 2019. Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland. Geomorphology, 326: 225-238. https://doi.org/10.1016/j.geomorph.2018.01.015
  • 67. Pisarska-Jamroży, M., Zieliński, T., 2012. Specific erosional and depositional processes in a Pleistocene subglacial tunnel in the Wielkopolska region, Poland. Geografiska Annaler: Series A, Physical Geography, 94: 429-443. https://doi.org/10.1111/j.1468-0459.2012.00466.x
  • 68. Pisarska-Jamroży, M., Belzyt, S., Börner, A., Hoffmann, G., Hüneke, H., Kenzler., M., Van Loon, A.T., 2018. Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745: 338-348. https://doi.org/10.1016/j.tecto.2018.08.004
  • 69. Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A., Woronko, B., 2019a. Seismic shocks, periglacial conditions and glacitectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32: 63-77. https://doi.org/10.5200/baltica.2019.1.6
  • 70. Pisarska-Jamroży, M., Van Loon, A.J., Mleczak, M., Roman, M., 2019b. Enigmatic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evidenced by seismites) caused by Saalian glacioisostatic crustal rebound. Geomorphology, (326): 239-251. https://doi.org/10.1016/j.geomorph.2018.01.010
  • 71. Rana, N., Prakash Sati, S., Sundriyal, Y., Juyal, N., 2016. Genesis and implication of soft sediment deformation structures in high energy fluvial deposits of the Alaknanda valley, Garhwal Himalaya, India. Sedimentary Geology, 344: 263-276. https://doi.org/10.1016/j.sedgeo.2016.06.012
  • 72. Rodriguez-Pascua, M.A., Calvo, J.P., De Vicente, G., Gómez- Gras., D., 2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135: 117-135. https://doi.org/10.1016/S0037-0738(00)00067-1
  • 73. Ross, J.A., Peakall, J., Keevil, G.M., 2013. Subaqueous sand extrusion dynamics. Journal of the Geological Society, 170, 593-602. https://doi.org/10.1144/jgs2012-124
  • 74. Rossetti, D.F., 1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, Săo Luís Basin, northern Brazil: evidence for palaeoseismicity. Sedimentology, 46: 1065-1081. https://doi.org/10.1046/j. 1365-3091.1999.00265.x
  • 75. Roy, S.K., Banerjee, S., 2016. Soft sediment deformation structures in the Andaman Flysch Group, Andaman Basin: evidence for Paleogene seismic activity in the Island Arc. Beri Sedimentology, 35: 55-64. https://doi.org/10.51835/bsed.2016.35.1.103
  • 76. Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology, 13: 155-159. https://doi.org/10.1111/j.1365-3091.1969.tb01125.x
  • 77. Shanmugam, G., 2016. The seismite problem. Journal of Palaeogeography, 5: 318-362. https://doi.org/10.1016/jJop.2016.06.002
  • 78. Singh, S., Jain, A.K., 2007. Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: Geological evidences of paleoseismicity along active fault zone. Sedimentary Geology, 196: 47-57. https://doi.org/10.1016/j.sedgeo.2006.06.005
  • 79. Topal, S., Özkul, M., 2014. Soft-Sediment deformation Structures interpreted as Seismites in the Kolankaya Formation, Denizli Basin (SW Turkey). The Scientific World Journal, 2014. https://doi.org/10.1155/2014/352654
  • 80. Umair, A., Syed Ahmad, A., 2018. Seismically induced soft-sediment deformation structures in an active seismogenic setting: The Plio-Pleistocene Karewa deposits, Kashmir Basin (NW Himalaya). Journal of Structural Geology, 115: 28-46. https://doi.org/10.1016/jjsg.2018.07.005
  • 81. Valente, A., Slaczka, A., Cavuoto, G., 2014. Soft-sediment deformation structures in seismically affected deep-sea Miocene turbidite. Geologos, 20: 67-78. https://doi.org/10.2478/logos-2014-0009
  • 82. Vandekerkhove, E., Van Daele, M., Praet, N., Cnudde, V., Haeussler, P.J., De Batist, M., 2020. Flood-triggered versus earthquake-triggered turbidites: a sedimentological study in clastic lake sediments (Eklutna Lake, Alaska). Sedimentology, 67: 364-389. https://doi.org/10.1111/sed.12646
  • 83. Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15: 3-55.
  • 84. Van Loon, A.J., Pisarska-Jamrozy, M., Nartiss, N., Krievans, M., Soms, J., 2016. Seismites resulting from high-frequency, highmagnitude earthquakes in Latvia caused by Late Glacial glacio- isostatic uplift. Journal of Palaeogeography, 5: 363-380. https://doi.org/10.1016/j.jop.2016.05.002
  • 85. Vanneste, K., Meghraoui, M., Camelbeeck, T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics, 309: 57-79. https://doi.org/10.1016/S0040-1951(99)00132-8
  • 86. Waldron, J.W.F., Gagnon, J.F., 2011. Recognizing soft sediment structures in deformed rocks of orogens. Journal of Structural Geology, 33: 271-279. https://doi.org/10.1016/jJsg.2010.06.015
  • 87. Woźniak, P.P., Pisarska-Jamroży, M., 2016. Rzucewo-soft-sediment deformation structures in glaciolimnic sediments-different trigger mechanisms. Quaternary geology of north-central Poland: from the Baltic coast to the LGM limit. University of Gdańsk: 53-67.
  • 88. Woźniak, P.P., Pisarska-Jamroży, M., 2018. Debris flows with soft-sediment clasts in a Pleistocene glaciolacustrine fan (Gdańsk Bay, Poland). Catena, 165: 178-191. https://doi.org/10.1016/j.catena.2018.01.022
  • 89. Woźniak, P.P., Belzyt, S., Pisarska-Jamroży, M., Woronko, B., Lamsters, K., Nartišs, M., Bitinas, A., 2021. Liquefaction and re-liquefaction of sediments induced by uneven loading and glacigenic earthquakes: Implications of results from the Latvian Baltic Sea coast. Sedimentary Geology, 421: 105944. https://doi.org/10.1016/j.sedgeo.2021.105944
  • 90. Yang, R.C., Van Loon, A.J., 2016. Early Cretaceous slumps and turbidite with peculiar soft-sediment deformation structures on Lingshan Island (Qingdao, China) indicating a tensional tectonic regime. Journal of Asian Earth Sciences, 129: 206-219. https://doi.org/10.1016/jJseaes.2016.08.014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ea8406c-bb54-45ae-80fd-9d018b278424
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.